期刊文献+

基于混合向量空间模型的主题网站识别 被引量:4

Specific website subject recognition based on the hybrid vector space model
原文传递
导出
摘要 为了实现面向特定领域网站的网络资源搜索,提出了一种描述网站主题特征的混合向量空间模型。利用链接文本信息来描述同类主题网站的内容和组织结构所具有的相似特点,而不是由网站链接的树或图结构反映。在向量空间模型的基础上,抽取反映网站结构和内容的文本特征信息,建立网站主题的特征向量模型。在此基础上进行制造企业网站的主题搜索,采用类中心向量法进行了网站主题分析。结果表明:该模型适合于网站主题的特征描述,有助于提高网站主题识别与分类的准确性和效率,在主题搜索和网站分类等应用中具有较好的适用性。 Internet resource search for specific subject websites was realized using a hybrid vector space model developed to describe website subject features. The model describes the content and structure similarities of websites of the same subject by linking text information instead of by using tree and graph structures linked by the websites. The characteristic vector model for the website subject was established by extracting text information about website content and structure features based on the vector space...
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第S1期1795-1801,共7页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(60374057) 国家"十五"科技攻关项目(211CERS-12)
关键词 网络搜索 向量空间模型 特征描述 制造网站 web search vector space model feature description manufacturing website
  • 相关文献

参考文献2

二级参考文献21

  • 1[1]Ester M, Kriegel HP, Schubert M. Web site mining: A new way to spot competitors, customers and suppliers in the world wide web.In: Hand D, ed. Proc. of the SIGKDD 2002. Edmonton: ACM Press, 2002. 249~258.
  • 2[2]Chakrabarti S, Joshi M, Tawde V. Enhanced topic distillation using text, markup tags, and hyperlinks. In: Kraft DH, ed. Proc. of the 24th ACM-SIGIR Conf. on Research and Development in Information Retrieval. New Orleans: ACM Press, 2001. 208~216.
  • 3[3]Chakrabarti S. Integrating the document object model with hyperlinks for enhanced topic distillation and information extraction. In:Shen VY, ed. Proc. of the WWW 2001. Hong Kong: ACM Press, 2001.211~220.
  • 4[4]Pierre JM. On the automated classification of web sites. Computer and Information Science, 2001,6(001).
  • 5[5]Terveen L, Hill W, Amento B. Constructing, organizing, and visualizing collections of topically related web resources. ACM Trans.on Computer-Human Interaction, 1999,6(1):67~94.
  • 6[6]Crouse MS, Nowak RD, Baraniuk RG. Wavelet-Based statistical signal processing using hidden Markov models. IEEE Trans. on Signal Processing, 1998,46(4):886~902.
  • 7[7]Li J, Gray RM. Context-Based multiscale classification of document images using wavelet coefficient distributions. IEEE Trans. on Image Processing, 2000,9(9):1604~1616.
  • 8[8]Chakrabarti S, Berg M, van den Dom B. Focused crawling: A new approach to topic-specific web resource discovery. Computer Networks, 1999,31 (11-16): 1623~ 1640.
  • 9[9]Minh ND. Fast approximation of Kullback-Leibler distance for dependence trees and hidden Markov model. IEEE Signal Processing Letters, 2003,10(4): 115~ 118.
  • 10[10]Diligenti M, Gori M, Maggini M, Scarselli F. Classification of HTML documents by hidden tree-Markov models. In: Tombre K, et al, eds. Proc. of the Int'l Conf. on Document Analysis and Recognition (ICDAR 2001). Los Vaqueros: IEEE Computer Society Press, 2001. 849~853.

共引文献95

同被引文献35

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部