期刊文献+

基于D-S证据理论的模糊聚类图像融合分割 被引量:2

FCM image fusion segmentation based on Dempster-Shafer theory
下载PDF
导出
摘要 针对模糊聚类图像分割算法的固有缺点,提出了一种基于D-S证据理论的模糊聚类图像融合分割算法。对图像的点灰度特征和块灰度特征分别进行模糊C均值聚类,并将各自的模糊隶属度转化为单一或复合假设及其基本概率赋值,再利用D-S证据理论进行融合分割。实验结果表明该算法的分割效果优于传统的模糊聚类分割算法。 In view of the defects of fuzzy C-mean clustering(FCM) image segmentation,an FCM image fusion segmentation algorithm based on the Dempster-Shafer(D-S) theory is presented. Based on the clustering results of the gray level feature of each pixel and their spatial pixels,each of the membership degree is translated into the basic belief assignment of simple or composite hypotheses,then these basic belief assignments are combined to make fusion segmentation according to the D-S theory. The experiment results demonstrate the excellent performance of this algorithm.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 2004年第7期721-724,共4页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(60175011 60375011) 安徽省自然科学基金资助项目(01042301) 安徽省重点科研基金资助项目(03021012)
关键词 图像融合 模糊C均值聚类 D-S证据理论 图像分割 image fusion fuzzy C-mean clustering Dempster-Shafer theory image segmentation
  • 相关文献

参考文献4

  • 1[2]Trivedi M M. Low-level segmentation of aerial images with fuzzy clustering[J]. IEEE Trans SMC, 1986,16(4):589-598.
  • 2[4]Klein L A. Sensor and data fusion concepts and applications[M]. Washington:SPIE Optical Engineering Press,1999.95-107.
  • 3[5]Zhu Y M,Bentabet L,Dupuis O,et al. Automatic determination of mass functions in Dempster-Shafer theory using fuzzy C-means and spatial neighborhood information for image segmentation[J]. Opt Eng,2002,41(4): 760-770.
  • 4安良,胡勇,胡良梅,孟玲玲.一种改进的模糊C-均值(FCM)聚类算法[J].合肥工业大学学报(自然科学版),2003,26(3):354-358. 被引量:13

二级参考文献6

  • 1Pal N R, Bezdek J C. On cluster validity for the fuzzy C-means[J]. IEEE Transactions on Fuzzy System,1995,3(3):370--379.
  • 2Selim S Z,Alsultan K. A simulated annealing algorithm for the clustering problem[J]. Pattern Recognition, 1991,24(10) : 1003--1008.
  • 3Kamel M S, Selim S Z. New algorithms for solving the fuzzy clustering problem[J]. Pattern Recognition,1994,27(3):421--428.
  • 4Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981.95--107.
  • 5陈宁,陈安,周龙骧.数值型和分类型混合数据的模糊K-Prototypes聚类算法(英文)[J].软件学报,2001,12(8):1107-1119. 被引量:47
  • 6范九伦,吴成茂,马远良.基于类间关联度的聚类有效性函数[J].模式识别与人工智能,2001,14(3):302-305. 被引量:4

共引文献12

同被引文献16

  • 1Lin W H, Lee J S, Chen C H, et al. A new multiscale- based shape recognition method[J]. Signal Processing, 1998, 65:103-113.
  • 2Pachai C, Zhu Y M, Grimaud J. A pyramidal approach for automatic segmentation of multiple sclerosis lesions in brain MRI [J]. Computerized Medical Imaging and Graphics, 1998, 22(5): 399-408.
  • 3Zhu Ym, Bentabet L, Dupuis O, et al. Automatic determination of mass functions in Dempster-Shafer theory using fuzzy C means and spatial neighborhood information for image segmentation[J]. Opt Eng, 2002, 41(4): 760-770.
  • 4Zhang Tianxu, Zuo Zhengrong, Zuo Zhen. Detection of sea surface small targets in infrared images based on multilevel filter and minimum risk bayes test [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2000, 14(7): 907-918.
  • 5R L Lagendijk ,J Biemond, D E Boekee. Regularized itera- rive image restoration with ringing reduetion [ J ]. IEEE Trans. Acoust. Speeeh, Signal Processing, 1958, 36 (12) :1874 - 1887.
  • 6Broggi, P Cerri, S Ghidoni, P Grisleri, H Gi. A new approach to urban pedestrian detection for automatic braking [ J ]. IEEE Trans. Intell. Transp, 2009:594 - 605.
  • 7Zhang Qiang,Wang Long, Li Huijuan, et al. Similarity - based muhimodality image fusion wire shiftable complex dil:ctional pyramid [ J ]. Pattern Recognition Leuers, 2011,32(13) :1544 - 1553.
  • 8Fleishman S, Drori I, Cohen - Or D. Bilatera| mesh denoising[ J]. ACM Transactions On Graphics. 2003,22(3) :950 -953.
  • 9Pham T Q, Vail Vliet L J. Separable bilateral filtering for fast video preprocessing [ C ]. IEEE International Conference on Multimedia and Expo,2005:6 -8.
  • 10Tomasi C, Manduchi R. Bilateral fltering for gray and color images [ C ]. lntematioual Conferenee On Computer Vision, 1998:7 - 9.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部