期刊文献+

基于元模型架构的UML类图到PVS规范的转化方法 被引量:1

Meta-modeling Architecture Based Method for Transforming UML Class Diagram into PVS Specification
下载PDF
导出
摘要 UML是一种非形式化的面向对象建模语言,它缺少精确的语义定义;PVS规范则是一种具有精确语义定义的形式化规范语言,通过PVS规范给UML图形赋予精确的语义可以结合两者的优势.为此,提出了一个将UML类图转换成PVS规范的框架.按照UML的4层架构,依次对元元模型、元模型以及UML图形进行转换,并且前一次转换所得到的规范可以为后面的转换提供上下文背景.与其他方法相比,这种分层转化的方法降低了转换难度,保证了转换的正确性,保持了UML模型更完整的语义成分. UML has become the de-facto standard for object-oriented modeling. However, it is still an informal language without a precise semantics. PVS is higher-order logic formal specification language. Transforming UML diagram into formal specification was studied in order to combine the advantages of both languages. An approach for transforming UML class diagram into PVS specification was given. Following the four-layer architecture of UML, meta-meta-model, meta-model and UML diagram are formalized in three steps, and the result of each step provides a context foundation for the next formalization. This approach is better in decreasing difficulty, ensuring correctness, and can retain much semantics.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第z1期159-163,共5页 Journal of Shanghai Jiaotong University
关键词 统一建模语言 元模型 PVS规范 转换 unified modeling language(UML) meta-model PVS specification transform
  • 相关文献

参考文献8

  • 1[1]OMG. OMG UML specification v1. 4, OMG document ad/99-06-8[EB/OL]. http://www. omg. org/cgi-bin/doc? formal/01-09-67, 2001.
  • 2[2]Evans A, Kent S, Selic B, et al. UML 2000-the unified modeling language[A]. Proceedings of the Third International Conference in York, UK[C]. Berlin:Springer Verlag, 2000.
  • 3[3]Chan W, Anderson R J, Beame P, et al. Model checking large software specifications [J]. IEEE Transactions on Software Engineering, 1998,24 (7):498-520.
  • 4[4]Deloach S A, Hartrum T C. A theory-based representation for object-oriented domain models [J].IEEE Transactions on Software Engineering, 2000,26(6): 500-517.
  • 5[5]Aredo D B. Formalizing UML class diagrams in PVS [A]. Extended Abstract in Proceedings of Workshop on Rigorous Modeling and Analysis with the UML:Challenges and Limitations[C]. Denver, Colorado,USA: OOPSLA'99, 1999.
  • 6[6]Smith J. UML formalization and transformation[D].Boston, USA: Northeastern University, 1999.
  • 7[7]Muthiayen D. Real-time reactive system development-a formal approach based on UML and PVS [D]. Montreal, Canada: Concordia University,2000.
  • 8[8]Rushby J, Owre S, Shankar N. Subtypes for specifications: predicate subtyping in PVS [J]. IEEE Transactions on Software Engineering, 1998, 24 (9):709-720.

同被引文献9

  • 1Dijkstra E W. Self-stabilizing systems in spite of distributed control [J]. Communication of the ACM, 1974,17(5) :643-644.
  • 2Dijkstra E W. A belated proof of self-stabilization [J]. Distributed Computing, 19 8 6,13 (1) : 5-6.
  • 3Ghosh S. An alternative solution to a problem on self-stabilization [J]. ACM TOPLAS, 1993, 15 (4): 735-742.
  • 4Schneider M. Self-stabilization [J]. ACM Computing, 1993, 25(1): 45-67.
  • 5Shankar N,Owre S, Rushby J M. A tutorial on specification and verification using PVS[J]. SRI International, 1993,13(2) :32-41.
  • 6Owre S, Shankar N. Theory interpretations in PVS [J]. SRI International, 2001,17(11):633-642.
  • 7Shankar N, Owre S, Rushby J M, etal. PVS prover guide [J]. SRI International, 1999,23 (5) : 108-119.
  • 8Flatebo M, Datta K. Two-state self- stabilizing algorithms for token rings [J]. IEEE Transactions on Software Engineering, 1994, 20(6) :500-504.
  • 9MAO Ling-zhao. PVS source codes of self-stabilizing algorithm[EB/OL]. (2008-05-15) [2008-06-15]. http://basics.sjtu. edu. cn/-lingzhao/SelfStab/.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部