期刊文献+

基于Beta-Prime统计模型和QGD分类器的SAR图像地物分类方法 被引量:2

The SAR Image Terrain Classification Algorithm Combining Quadratic Gamma Discrimination Classifier and Beta-Prime Statistic Model
下载PDF
导出
摘要 本文融合了Beta prime(BP)统计模型和QuadraticGammadiscrimination(QGD)分类器各自的优点 ,给出了一个完整的合成孔径雷达 (SAR)图像地物分类算法 .通过利用BP模型区分背景杂波和目标 ,利用QGD分类器区分自然目标和人造目标 ,可以精确地把SAR图像分成阴影、背景杂波、自然目标和人造目标 ,在为目标识别过程提供潜在目标切片的同时 。 The synthetic aperture radar(SAR)image terrain classification algorithm combining the respective characteristics of Beta-prime(BP)statistic model and quadratic Gamma discrimination(QGD)classifier is presented.Through classifying background clutter and target by BP model,and classifying natural target and man-made target by QGD classifier,this algorithm can cluster the SAR image into shadow,background clutter,natural target and man-made target.It can offer not only the information of background clutter and natural target,but also the potential target chips for target recognition process.
出处 《电子学报》 EI CAS CSCD 北大核心 2003年第z1期2163-2166,共4页 Acta Electronica Sinica
关键词 合成孔径雷达图像 QGD分类器 BP统计模型 地物分类 SAR image QGD classifier BP statistic model terrain classification
  • 相关文献

参考文献8

  • 1[1]Stewart D, Blacknell D, et al . Optimal approach to SAR image segmentation and classification[J] .Radar,Sonar and Navigation,IEE Proceedings,2000,147(6): 134 - 142.
  • 2[2]Yoshihisa Hara, Robert G Atkins,et al. Application of neural networks to radar image classification[J]. IEEE Trans on Geoscience and Remote Sensing, 1994,32(1): 100- 109.
  • 3[3]Scott Evan Decatur. Application of neural networks to terrain classification [ A ]. Proceedings of the IEEE International Joint Conference on Neural Networks[ C]. Washington DC: Internal Neural Network Socrety,June 1989.283- 288.
  • 4[4]Jose S Salazar, Don R Hush, et al. Statistical modeling of target and clutter in single-look non-polorimetric SAR imagery[ A ]. Proceeding of international Conference Signal and Image Processing[ C ]. Las Vegas Nevada, US A: ACTA Press, 1998.28 - 31.
  • 5[5]Jose C Principe, Alex Radisavl Jevic, et al. Target prescreening based on a quadratic gamma discriminator[J] .IEEE Trans on Aerospace and Electronic Systems, 1998,34(3): 38 - 44.
  • 6[6]Ward K D.Componnd representation of high resolution sea clutter[J].Electron Letter, 1981,17:561 - 565.
  • 7[7]A C Frery, H J Muller, et al. A Model for Extremely Heterogeneous Clutter[J] .IEEE Trans on Geoscience and Remote Sensing, 1997,35(3) :648 - 659.
  • 8付琨,匡纲要,郁文贤.基于改进相关邻域模型的SAR图像RCS重构[J].系统工程与电子技术,2001,23(4):48-53. 被引量:3

二级参考文献8

  • 1[1]McConnell I, White R G, Oliver C J, et al. Radar Cross-Section Estimation of SAR Images. Europto Conf. on SAR Image Analysis, Simulation and Modeling, Taormina, Italy, SPIE proc., 1996, 2958: 74~85.
  • 2[2]Lee J S. A Simple Speckle Smoothing Algorithm for Synthetic Aperture Radar Images. IEEE Trans. on Syst.Man Cybern,1983, 13:85~89.
  • 3[3]Lee J S. Refined Filtering of Image Noise Using Local Statistics.Comp. Graph.Images Proc., 1981, 17:1735~1758.
  • 4[4]Kuai D T, Sawchuk A A, Strand, et al. Adaptive Restoration of Images with Spekle.IEEE Trans. on Acoust.Speech Signal Process., 1987, 35:373~383.
  • 5[5]Crimmins T R. Geometric Filter for Reducing Speckle. Appl.opt., 1985,24:1438~1443.
  • 6[6]Ward K D. Compound Representation of High Resolution Sea Clutter. Electron. Lett., 1981, 17:561~565.
  • 7[7]Oliver C J. A Model for Non-Rayleigh Scattering Statistics. Opt.Acta, 1984, 31:701~722.
  • 8[8]Chris Oliver,Shaun Quegan. Understanding Synthetic Aperture Radar Images.Chapter 6, 1998:166.

共引文献2

同被引文献25

引证文献2

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部