摘要
本文融合了Beta prime(BP)统计模型和QuadraticGammadiscrimination(QGD)分类器各自的优点 ,给出了一个完整的合成孔径雷达 (SAR)图像地物分类算法 .通过利用BP模型区分背景杂波和目标 ,利用QGD分类器区分自然目标和人造目标 ,可以精确地把SAR图像分成阴影、背景杂波、自然目标和人造目标 ,在为目标识别过程提供潜在目标切片的同时 。
The synthetic aperture radar(SAR)image terrain classification algorithm combining the respective characteristics of Beta-prime(BP)statistic model and quadratic Gamma discrimination(QGD)classifier is presented.Through classifying background clutter and target by BP model,and classifying natural target and man-made target by QGD classifier,this algorithm can cluster the SAR image into shadow,background clutter,natural target and man-made target.It can offer not only the information of background clutter and natural target,but also the potential target chips for target recognition process.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2003年第z1期2163-2166,共4页
Acta Electronica Sinica