期刊文献+

舰艇近程防空武器的优化分配算法

An Improved Assignment Algorithm for Short Range Anti-air Weapon of Warship
下载PDF
导出
摘要 依据武器对目标的杀伤性能,提出了一种舰艇近程防空武器实时动态分配算法。算法采用贝叶斯网络处理不确定因素,采用任意时间规划策略解决实时性问题。仿真实验结果表明,该算法实时性好,能有效提高武器的使用效率。 A real time algorithm for the carrier based short range anti-air weapons dynamic assignment was developed according to the weapons kill abilities to different target.Bayesian network and anytime planning algorithm were introduced each to deal with uncertainties and to solve real time problem.Simulation result shows that the algorithm can satisfy real-time requirement fairly well and can improve the efficiency of the use of weapons evidently.
出处 《舰船电子工程》 2008年第9期138-141,共4页 Ship Electronic Engineering
关键词 贝叶斯网络 任意时间规划算法 近程防御 Bayesian networks anytime planning algorithm short range defense
  • 相关文献

参考文献5

二级参考文献18

  • 1Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo,CA,Morgan Kaufmann, 1988
  • 2Pearl J. On Evidence Reasoning in a Hierarchy of Hypotheses. Artificial Intelligence, 1986,28: 9~ 15
  • 3Heckerman D. A Bayesian Approach for Learning Causal Networks. In: Proc. of the 11th Conf. of Uncertainty in Artificial Intelligence,San Francisco,1995. 285~295
  • 4Kirillov V P. Constructive Stochastic Temporal Reasoning in Situation Assessment. IEEE Trans. on System,Man and Cybernetics, 1994,21 (7): 1099~1113
  • 5Miao A X,Zacharias G L,Kao S-P. A computational situation assessment model for nuclear power plant operations. IEEE Trans.on Systems,Man,and Cybernetics ,Part A,1997,27(6): 728~742
  • 6Albrecht D,Zukerman I,Bud A. Towards a Bayesian model for keyhole plan recognition in large domains. In: Proc. of the Sixth Intl. Conf. on User Modeling,Sardinia,Italy, 1997. 365~376
  • 7Witten I H, Frank E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations[M].Seattle: Morgan Kaufmann Publishers,2000. 265 - 314.
  • 8Kononenko I. Semi - Naive Bayesian Classifiers[A]. In:Proceedings of European Conference on Artificial Intelligence[C].Porto, Portugal: Springer-Verlag, 1991. 206-219.
  • 9Langley P,Sage S. Induction of Selective Bayesian Classifiers[A]. In: Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence[C]. Seattle, WA: Morgan Kaufmann Publishers, 1994. 339 - 406.
  • 10Kohavi R. Scaling up the Accuracy of Naive - Bayes Classifiers: A Decision- Tree Hybird[A]. In: Simoudis E, Han J W, Fayyad U M. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining [ C ].Menlo Park, CA: AAAI Press, 1996. 202 - 207.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部