期刊文献+

Numerical Analysis on Current Transport Characteristics in Single Layer Organic Electroluminescent Devices 被引量:3

Numerical Analysis on Current Transport Characteristics in Single Layer Organic Electroluminescent Devices
下载PDF
导出
摘要 A new model to describe I-V characteristics of organic light emitting devices (OLEDs) is developed based on experimental results. The dependence of I-V characteristics on energy barrier, trap density and carrier mobility is analyzed. The result shows that this model combines the Fowler Nordheim tunnel theory and the trap charge limited current theory with exponential trap distribution (TCL), and it describes the current transport characteristics of OLEDs more comprehensively. The I-V characteristics follow Fowler Nordheim theory when the energy barrier is high, the trap density is small and the carrier mobility is large.In other cases they follow the TCL theory. A new model to describe I--V characteristics of organiclight-emitting devices (OLEDs) is developed based on experimentalresults. The dependence of I--V characteristics on energy barrier,trap density and carrier mobility is analyzed. The result shows thatthis model combines the Fowler-Nordheim tunnel theory and the trapcharge limited current theory with exponential trap distribution(TCL), and it describes the current transport characteristics ofOLEDs more comprehensively. The I--V characteristics followFowler-Nordheim theory when the energy barrier is high, the trapdensity is small and the carrier mobility is large. In other casesthey follow the TCL theory.
出处 《Semiconductor Photonics and Technology》 CAS 2002年第4期215-220,227,共7页 半导体光子学与技术(英文版)
基金 NationalNaturalScienceFoundationofChina(No .60 0 760 2 3)
关键词 ORGANIC light EMITTING device CHARACTERISTICS NUMERICAL model Organic light emitting device Characteristics Numerical model
  • 相关文献

参考文献13

  • 1[1]Aparna R, Norbert K, Jacques G, et al. Interfacial electronic structure for Ca and an electroluminescent polymer: Poly (2,5-diheptyl-1,4-phenylene-alt-2,5-thienylene)[J]. Appl. Phys. Lett., 2000,87(3):1 331-1 336.
  • 2[2]Suh Kwang S, Kim Jong Eun, Oh Woo Jung, et al. Charge distribution and conduction characteristics of 2-vinylpyridine-grafted polyethylenes[J]. Appl. Phys. Lett., 2000, 87(10): 7 333.
  • 3[3]He Yi, Jerzy K. High-efficiency organic polymer light-emitting heterostructure devices on flexible plastic substrates[J]. Appl. Phys. Lett., 2000,76 (6):661-663.
  • 4[4]Li Min-run, Yu Jun-sheng, Chen Zhi-jian, et al. New red electroluminescent devices using tris(2,2′-bipyridine)ruthenium(II) hexafluorophosphate as emitter[J]. Jpn. J. Appl. Phys., 2000,39: L1 171.
  • 5[5]Satoshi H, Keisuke E, Kazuaki F. Near-ultraviolet electroluminescent performance of polysilane-based light-emitting diodes with a double-layer structure[J]. Appl. Phys. Lett., 2000,87(4):1 968.
  • 6[6]Choong Vi-en, Shi Song, Curless Jay, et al. Bipolar transport organic light emitting diodes with enhanced reliability by LiF doping[J]. Appl. Phys. Lett., 2000,76(8):958-960.
  • 7[7]Shizuo T, Hiromitsu T, Koji N, et al. Temperature dependence of electroluminescent characteristics in the devices fabricated with novel triphenylamine derivatives[J]. IEEE Trans. on electron device, 1997,44(8): 1 239-1 244.
  • 8[8]Parker I D. Carrier tunneling and device characteristics in polymer light-emitting diodes[J]. J. Appl. Phys., 1994,75(3):1 656-1 662.
  • 9[9]Jain S C, Geens W, Mehra A, et al. Injection and space charge limited-currents in doped conducting organic materials[J]. J. Appl. Phys., 2001, 89(7): 3 804-3 810.
  • 10[10]Bolm P W M, Jong M J M, Vleggaar J J M. Electron and hole transport in poly(p-phenylene vinylene) devices[J]. Appl. Phys. Lett., 1996,68(23):3 308-3 310.

同被引文献11

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部