期刊文献+

一种基于自适应预测的医学图像高效无损压缩方法 被引量:5

An Efficient Lossless Medical Image Compression Method Based on Adaptive Prediction
下载PDF
导出
摘要 随着数字化医学图像海量的增长及PACS系统的广泛应用 ,对医学图像进行高效的无损压缩已成为广泛关注的问题 .本文提出一种基于自适应预测的无损压缩方法 ,该方法利用神经网络模型自学习的能力 ,自适应的调整预测器的预测系数 .实验表明 ,该方法能有效去除X线医学图像的空间相关性 ,还能同时去除彩色医学图像的空间和谱间相关性 ,取得较高的压缩比 。 With the rapid increase of digitized medical image and wide application of PACS, efficient lossless medical image compression method has been highly desired.In this paper,a lossless compression method ,based on adaptive prediction,is presented.This method uses neural network model to modify the prediction weight.As a result,the algorithm can remove the redundancy of X ray medical images adaptively.In addition,it can simultaneously exploit the spatial and spectral correlation of colored medical images.Experimental results have proven the effectiveness and efficiency of this algorithm.
出处 《电子学报》 EI CAS CSCD 北大核心 2001年第z1期1914-1916,共3页 Acta Electronica Sinica
基金 国防预研基金资助项目 (No.98J2 0 .0 .0QT0 1 0 1 )
关键词 医学图像 无损压缩 神经网络 自适应编码 medical image lossless compression neural network adaptive coding
  • 相关文献

参考文献13

  • 1[2]B Carpentieri,M J Weiberger,G Seroussi.Lossless compression of continuous-tone images [J].Proc.IEEE,2000,88 (11):1797-1809.
  • 2[3]M J Weinberger,G Seroussi,G Sapiro.The LOCO-I lossless image compression algorithm:principles and standardization into JPEG-LS[Z].HPL-98-193,Nov.1998.
  • 3[4]S Wong,L Zaremba,D Gooden,H K Huang.Radiological image compression-A review [J].Proc.IEEE,1995,83 (2):194-219.
  • 4[5]L Shen,R M Rangayyan.A segmentation-based lossless image coding method for high-resolution medical image compression [J].IEEE Trans.Medical Imag.,1997,16(3):301-307.
  • 5[6]N Memon,X Wu.Recent developments in context-based predictive techniques for lossless image compression [J] .The Computer Journal,1997,40(2/3):127-136.
  • 6[7]C Lee.Lossless adaptive differential coding of images [J].SPIE vol.2418:2-7.
  • 7[8]T V Ramabadran,K Chen.The use of contextual information in the reversible compression of medical images [J].IEEE Trans.Medical Imag.,1992,11(2):185-195.
  • 8[9]X Wu.Lossless compression of continuous-tone images via context selection,quantization,and modeling [J].IEEE Trans.lmage Precessing,1997,6(5) :656-664.
  • 9[10]R B Arps,T K Truong.Comparison of international standards for lossless still image compression [J].Proc.IEEE,1994,82(6) :889-899.
  • 10[11]ISO/IEC.Information technologv:-lossless compression of continuoustone still images [S].14495-1,ITU Recommendation T.87,1999.

同被引文献66

  • 1张培强,柴焱,张晓玲,沈兰荪.基于波段分组的3D-SPIHT高光谱图像无损压缩算法[J].中国图象图形学报(A辑),2005,10(4):425-430. 被引量:10
  • 2蒋鹏,黄清波,尚群立,王智,孙优贤.基于小波网络的数据压缩方法研究[J].仪器仪表学报,2005,26(12):1244-1247. 被引量:5
  • 3B Aiazzi, P Alba, L Alparone, et al. Lossless compression of multi/hyper-spectral imagery based on a 3-D fuzzy prediction[J]. IEEE Trans.Geosci. Remote Sensing, 1999,37(5): 2287-2294.
  • 4M R Pickering,M J Ryan. Efficient spatial-spectral compression of hyperspectral data[J]. IEEE Trans. on Geosci. Remote Sensing, 2001,39(7):1536-1539.
  • 5M J Ryan, J F Arnold. The lossless compression of AVIRIS images by vector quantization[J]. IEEE Trans. Geosci. Remote Sensing, 1997,35(3):546-550.
  • 6G P Abousleman, et al. Hyperspectral image compression using entropyconstrained predictive trellis coded quantization[J]. IEEE Trans. Image Processing, 1997,6(4):566-573.
  • 7M R Pickering, M J Ryan. Compression of hyperspectral data using vector quantisation and the discrete cosine transform[A]. 2000 International Conference on Image Processing [C]. Vancouver, BC: ICIP,2000.195-198.
  • 8S R Tate. Band ordering in lossless compression of multispectral images[J]. IEEE Trans. Comput, 1997,46(4):477-483.
  • 9M J Weinberger, et al. The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS[R]. HPL-98-193,1998.
  • 10C Christopoulos, et al. The JPEG2000 still image coding system: an overview[J]. IEEE Trans. Consumer Electron. ,2000,46(4):1103-1127.

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部