期刊文献+

水下目标回波信号的分形Brown运动随机特征矢量与分类 被引量:1

A Method of Extracting Random Feature Vectors from Echo Signals for Classification of Underwater Targets
下载PDF
导出
摘要 在研究水下目标回波信号的统计性质的基础上 ,给出以分形 Brown运动小波均方展开式中随机系数的方差作为目标回波信号随机矢量特征 ,以模糊竞争网络作为分类器对目标进行分类的方法 ;并给出了该方法的计算方法和计算步骤。大量模拟计算结果和实测目标回波信号的分类结果表明 ,新方法具有较好的实时性和较高的识别率。 The effective method of extracting the feature vectors from echo signals is the key problem to classification and recognition of underwater targets. However, the characteristic vectors in echo signals of underwater targets are often considered as nonrandom vectors (see Refs.1~3). In fact, the increments of some echo signals of underwater target possess statistical self-similarity (see Ref.4). The increment of Fractal Brown Motion (FBM) also possesses statistical self-similarity. Taking full advantage of these two statistical self-similarities, we present a new method for extracting the random feature vectors from echo signals of underwater targets based on FBM. Subsections 1.1 and 1.2 present relevant mathematical model needed for our research. Subsection 1.3 gives the five steps of calculation procedure for extracting the random feature vectors from echo signals of underwater targets with the random wavelet coefficients of FBM. Two kinds of the random feature vectors from echo signals of underwater targets based on FBM are shown in Figs.1 and 4. The classification of targets based on fuzzy neural network and Table 1 gives the results of classification based on fuzzy neural network and on only 34 samples: 20 learning samples and 14 test samples. Table 1 shows that only 2 test samples are incorrectly classified. The results of the other experiments also show that the precision of the classification of underwater targets is up to about 85%. The method based on FBM method appears to be an effective method for classifying underwater targets.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2004年第3期321-325,共5页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金 (6 0 375 0 0 3) 航空科学基金 (0 3I5 30 5 9)资助
关键词 水下目标回波信号 分形Brown运动 随机特征矢量 分类 echo signal of underwater target, Fractal Brown Motion (FBM), random feature vector, classification
  • 相关文献

参考文献7

二级参考文献40

  • 1恽伟君,朱钦章,段根宝,郭振玲.船舶螺旋桨避振器模拟装置试验研究[J].振动与冲击,1996,15(1):5-12. 被引量:3
  • 2郑君里 杨行峻.人工神经网络[M].北京:高等教育出版社,1992..
  • 3樊养余 尚久浩.用双谱确定信号的幅值和相位[J].西北轻工业学院学报,1993,(1).
  • 4章新华 王骥程 等.基于小波变换的舰船辐射噪声特征提取[J].声学学报,1997,22(2):139-144.
  • 5陶笃纯.噪声和振动谱中线谱的提取和连续谱平滑[J].声学学报,1984,9(6):337-344.
  • 6章新华.被动声呐目标特性分析与分类识别技术研究:博士后研究报告[M].哈尔滨工程大学,1999..
  • 7崔军娜 陆佶人.树状ART2-A神经网络在被动声呐信号分类中的应用.1993年全国水声会议[M].,1993.305-306.
  • 8徐继渝.舰船噪声包络分析及用于目标分类的参数选定.第六届船舶水下噪声学术讨论会论文集[M].桂林,1995..
  • 9丁钰平.目标被动信号神经网络的识别研究:硕士学位论文[M].东南大学水声信息处理实验室,1995..
  • 10宋爱国 陆佶人.基于AR模型和进化RBF网的被动声纳目标识别[J].南京大学学报,1997,33:79-81.

共引文献51

同被引文献32

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部