期刊文献+

求解非均质多孔介质中非饱和水流问题的一种自适应多尺度有限元方法——Ⅰ.数值格式 被引量:12

Adaptive multi-scale finite element method for unsaturated flow in heterogeneous porous media I.Numerical scheme
下载PDF
导出
摘要 为了有效地模拟跨越多个尺度的非均质多孔介质中的非饱和水流问题,本文提出一种自适应多尺度有限元方法。该方法能在一个粗尺度网格上精确而有效地获得具有非均质系数的非饱和水流方程的粗尺度解。其基本思路是使用修改的皮卡迭代格式来处理方程中的非线性性和构造一种自适应多尺度基函数来捕捉方程系数中的时空变异性。本文详细地描述了构造这一方法的原理并且给出了一种相应的算法。 For effectively simulating unsaturated flow in heterogeneous porous media spanning over many scales,an adaptive multi-scale FEM was proposed.The purpose of this method is to obtain the large-scale solution of unsaturated water flow equation with heterogeneous coefficients accurately and efficiently in a coarse-scale mesh.The basic idea is to use the modified Picard iteration scheme to address the nonlinear characteristics of the equation,and to construct an adaptive multi-scale basic function to account for...
作者 贺新光 任理
出处 《水利学报》 EI CSCD 北大核心 2009年第1期38-45,51,共9页 Journal of Hydraulic Engineering
基金 国家基础研究发展规划项目(2006CB403406) 国家自然科学基金项目(50779064) 湖南师范大学博士科研启动基金(资060634)
关键词 非均质多孔介质 非饱和水流 理查德方程 多尺度有限元方法 自适应多尺度基函数 heterogeneous porous media unsaturated water flow Richards equation FEM adaptive multi-scale basic function
  • 相关文献

参考文献3

二级参考文献29

  • 1薛禹群,叶淑君,谢春红,张云.多尺度有限元法在地下水模拟中的应用[J].水利学报,2004,35(7):7-13. 被引量:66
  • 2[1]Hou T Y, Wu X H. A multiscale finite element method for elliptic problems in composite materials and porous media [J]. Journal of computational physics,1997,134:169-189.
  • 3[2]Hou T Y, Wu X H, Cai Z. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients [J].Math. Comput., 1999,68(227):913-943.
  • 4[3]Cruz M E, Petera A. A parallel Monte-Carlo finite-element procedure for the analysis of multicomponent random media [J]. Int. J. Numer. Methods Eng., 1995,38:1087-1121.
  • 5[4]Dykaar B B, Kitanidis P K. Determination of the effective hydraulic conductivity for heterogeneous porous media using a numerical spectral approach:1.method [J]. Water Resources Research,1992,28(4):1155-1166.
  • 6[5]Durlofsky L J. Representation of grid block permeability in coarse scale models of randomly heterogeneous porous-media [J]. Water Resources Research,1992,28:1791-1800.
  • 7[6]McCarthy J F. Comparison of fast algorithms for estimating large-scale permeabilities of heterogeneous media [J]. Transport in Porous Media, 1995,19:123-137.
  • 8[7]Babuska I, Szymczak W G. An error analysis for the finite element method applied to convection-diffusion problems [J]. Comput. Methods Appl. Math. Engrg., 1982,31:19-42.
  • 9[8]Babuska I, Osborn E. Generalized finite element methods:Their performance and their relation to mixed methods [J].SIAM J. Numer. Anal., 1983,20:510-536.
  • 10[9]Babuska I, Caloz G, Osborn E. Special finite element methods for a class of second order elliptic problems with rough coefficients [J]. SIAM J. Numer. Anal., 1994,31:945-951.

共引文献72

同被引文献101

引证文献12

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部