摘要
假定两个总体x与y均有数据缺失,它们的分布函数分别为F(·)与G_θ(·),其中F(·)未知,G_θ(·)的概率密度函数g_θ(·)形式已知,仅依赖于一些未知的参数,利用Fractional填补法填补缺失值,在一定的条件下证明了缺失数据下两总体差异指标的半经验似然比统计量的渐近分布为x_1~2,由此可构造两总体差异指标的经验似然置信区间.
Suppose that there are two populations x and y with missing data on both of them, where x has distribution function F(·) which is unknown and y has distribution function G_θ(·) with probability density function g_θ(·) is of known from depending on some unknown parameterθ.Fractional random imputation is used to fill in missing data.Under certain mild conditions and missing data,it is shown that asymptotic distribution of the empirical likelihood ratio statistics for various difference of two semi-nonparametr...
出处
《数学研究》
CSCD
2009年第1期101-116,共16页
Journal of Mathematical Study
基金
国家自然科学基金资助项目(10661003)
广西科学基金项目(0728092)
教育部留学回国人员科研启动基金项目([2004]527)
广西研究生教育创新计划资助项目(桂学位[2006]40)
关键词
经验似然
置信区间
缺失数据
填补
回归填补
分数填补法
Empirical likelihood
Confidence intervals
Missing data
Imputation
Regression imputation
Fractional imputation