期刊文献+

三维向量基快速傅立叶算法 被引量:2

3-dimensional vector radix FFT algorithm
下载PDF
导出
摘要 给出了三维向量基快速傅立叶变换(3-D Vector Radix FFT)算法。对三维信号采用基2时域抽取,导出了该算法蝶形运算的一般形式。计算量比较结果显示,三维向量基FFT算法比基于行列分解的三维FFT算法计算量低,计算效率高。 This paper presented the 3-dimensional vector radix FFT algorithm.Through the method of decimation-in-time to the 3-dimensional signal,the paper deduced the general form of butterfly computation.The comparison result of various 3-dimensional DFT calculation shows that,the 3-dimensional vector radix FFT algorithm is in low-calculation and more efficient even compared to the 3-dimensional row-column decomposition FFT algorithm.
出处 《计算机应用》 CSCD 北大核心 2009年第2期618-621,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60602036) 天津市教委基金资助项目(20051209) 天津工业大学校基金资助项目(029470)
关键词 三维向量基FFT算法 蝶形运算 行列分解三维FFT算法 3-dimensional radix FFT algorithm butterfly computation 3-dimensional row-column decomposition FFT algorithm
  • 相关文献

参考文献1

二级参考文献13

  • 1J.W. Cooley and J.W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comput, 19 (1965), 296-301.
  • 2P.Duhamel and M. Vetterli, Fast Fourier tranceforms: a tutorial review and astate of the art, Signal Processing, 19 (1990), 259-299.
  • 3D.B. Harris etc., Vector radix fast Fourier transtorm, 1977 IEEE Int. Cof. on Acoustics,Speech and Signal Processing, May 9-11 1977, 548-551.
  • 4P.P. Hong, Fast two-dimensional Fourier tranceform , Proceedings of the third Hawau in-ternational conferce on system science, Patt 2, 990-993 (1970).
  • 5Z.J. Mou and P.duhamel, In-place butterfly-style FFT of 2-D real sequences, IEEE Trans.ASSP., 26: 10 (1988), 1642-1650.
  • 6E.O.布赖姆,快速富里叶变换,(中译本)上海科技出版社,1979,199-201.
  • 7S.C. Pei and J.L. Wu, Split vector radix 2-D fast Fourier transform, IEEE Trans., August1987, CAS-34: 978-980.
  • 8H.R. Wu and F.J. Paoloai. On the two-dimensional vector-radix FFT algorithm, IEEETrans., August 1989, ASSP-37: 1302-1324.
  • 9H.R. Wu and F.J. Paoloai, The structure of vector radix fast Fourier transform, IEEE Trans., September 1989, ASSP-37: 1415-1424.
  • 10S.C. Chan and K.L. Ho, Split vector-radix fast Fourier transform, IEEE Trans. August 1992, SP-40: 2029-2039.

共引文献5

同被引文献17

  • 1COOLEY J W, TUKEY J W. An algorithm for the machine calculation of complex Fourier series [ J]. Mathematics of Computation, 1965, 19(4): 297-301.
  • 2OPPENHEIM A V, SCHAFER R W, BUCK J R. Discrete-time signal processing [ M]. 2nd ed. Beijing: Tsinghua University Press, 2005:629 - 677.
  • 3DUHAMEL P, VETTERLI M. Fast Fourier transforms: A tutorial review and a state of the art [J]. Signal Processing, 1990, 19(4): 259 - 299.
  • 4HARRIS D B, MCCLELLAN J H, CHAN D S K, et al. Vector radix fast Fourier transform [ C]// IEEE International Conference on Acoustics, Speech, and Signal Processing. Washington, DC: IEEE, 1977,548 -551.
  • 5HONG P P. Fast two-dimensional Fourier transform [ C]//Proceedings of the Third Hawaii International Conference on System Science. Honolulu, Hawaii, USA: [s.n.], 1970, 990-993.
  • 6MOU Z J, DUHAMEL P. In-place butterfly-style FFT of 2-D real sequences [ J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1988, 36 (10) : 1642 - 1650.
  • 7WU H R, PAOLOAI F J. On the two-dimensional vector split-radix FFT algorithm [ J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1989, 37($): 1302 -1304.
  • 8WU H R, PAOLONI F J. The structure of vector radix fast Fourier transform[ J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1989, 37(9) : 1415 - 1424.
  • 9JOHNSON S G, FRIGO M. A modified split-radix FFT with fewer arithmetic operations [ J]. IEEE Transactions on Signal Processing, 2007, 55(1): 111-119.
  • 10CHEN ZHAODOU, ZHANG LIJING. Vector coding algorithms for muhidimensional discrete Fourier transform [ J]. Journal of Computational and Applied Mathematics, 2008, 212 (1) :63 -74.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部