期刊文献+

MATHEMATICAL ANALYSIS OF THE COLLAPSE IN BOSE-EINSTEIN CONDENSATE

MATHEMATICAL ANALYSIS OF THE COLLAPSE IN BOSE-EINSTEIN CONDENSATE
下载PDF
导出
摘要 In this article, the authors consider the collapse solutions of Cauchy problem for the nonlinear Schrdinger equation iψt + 1/2 △ ψ - 1/2 ω2|x|2ψ + |ψ|2ψ = 0, x ∈ R2, which models the Bose-Einstein condensate with attractive interactions. The authors establish the lower bound of collapse rate as t → T . Furthermore, the L2-concentration property of the radially symmetric collapse solutions is obtained. In this article, the authors consider the collapse solutions of Cauchy problem for the nonlinear Schrdinger equation iψt + 1/2 △ ψ - 1/2 ω2|x|2ψ + |ψ|2ψ = 0, x ∈ R2, which models the Bose-Einstein condensate with attractive interactions. The authors establish the lower bound of collapse rate as t → T . Furthermore, the L2-concentration property of the radially symmetric collapse solutions is obtained.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2009年第1期56-64,共9页 数学物理学报(B辑英文版)
基金 Supported by National Natural Science Foundation of China (10771151)
关键词 Nonlinear Schrdinger equation attractive Bose-Einstein condensates col-lapse rate L2-concentration Nonlinear Schrdinger equation attractive Bose-Einstein condensates col-lapse rate L2-concentration
  • 相关文献

参考文献15

  • 1R. Carles.Remarks on Nonlinear Schr?dinger Equations with Harmonic Potential[J].Annales Henri Poincaré.2002(4)
  • 2Jian Zhang.Stability of Attractive Bose–Einstein Condensates[J].Journal of Statistical Physics (-).2000(3-4)
  • 3Man Kam Kwong.Uniqueness of positive solutions of Δu?u+up=0 in Rn[J].Archive for Rational Mechanics and Analysis.1989(3)
  • 4Michael I. Weinstein.Nonlinear Schr?dinger equations and sharp interpolation estimates[J].Communications in Mathematical Physics.1983(4)
  • 5Walter A. Strauss.Existence of solitary waves in higher dimensions[J].Communications in Mathematical Physics.1977(2)
  • 6Tsutsumi Y.Rate of concentration of blow-up solutions for the nonlinear Schrdinger equation with critical power[].Nonlinear Analysis Theory Methods Applications.1990
  • 7Bradley C C,Sackett C A,Tollett J J,Hulet R G.Evidence of bose-einstein condensation in an atomic gas with attractive interactions[].Physical Review Letters.1995
  • 8Bradley C C,Sackett C A,Hulet R G.Bose-Einstein condensation of Lithium:observation of limited condensate number[].Physical Review Letters.1997
  • 9CARLES R.Remarks on nonlinear Schrodinger equations with harmonic potential[].Ann Henri Poincare.2002
  • 10R. Carles.Critical nonlinear Schrodinger equations with and without harmonic potential[].Mathematical Models and Methods in Applied Science.2002

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部