期刊文献+

MATHEMATICAL ANALYSIS OF THE COLLAPSE IN BOSE-EINSTEIN CONDENSATE 被引量:1

MATHEMATICAL ANALYSIS OF THE COLLAPSE IN BOSE-EINSTEIN CONDENSATE
下载PDF
导出
摘要 In this article, the authors consider the collapse solutions of Cauchy problem for the nonlinear Schrdinger equation iψt + 1/2 △ψ - 1/2 ω2|x|2ψ + |ψ|2ψ = 0, x ∈ R2, which models the Bose-Einstein condensate with attractive interactions. The authors establish the lower bound of collapse rate as t → T . Furthermore, the L2-concentration property of the radially symmetric collapse solutions is obtained. In this article, the authors consider the collapse solutions of Cauchy problem for the nonlinear Schrdinger equation iψt + 1/2 △ ψ - 1/2 ω2|x|2ψ + |ψ|2ψ = 0, x ∈ R2, which models the Bose-Einstein condensate with attractive interactions. The authors establish the lower bound of collapse rate as t → T . Furthermore, the L2-concentration property of the radially symmetric collapse solutions is obtained.
出处 《软件工程师》 2009年第4期-,共9页 Software Engineer
基金 Supported by National Natural Science Foundation of China (10771151)
Nonlinear Schrdinger equation attractive Bose-Einstein condensates col-lapse rate L2-concentration
  • 相关文献

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部