期刊文献+

一种提高卫星光通信终端发射效率的新方法 被引量:5

A Novel Method to Improve the Emission Efficiency of Satellite Optical Communication Terminal
原文传递
导出
摘要 在采用同轴反射式光学天线的卫星光通信终端中,发射光束受天线次镜的遮挡,将损失部分能量。为消除次镜遮挡,提高光通信终端的发射效率,提出一种基于衍射光学元件的新方法。该方法利用衍射原理将光束整形为圆环光束,以规避次镜遮挡。按照遮挡比和切断比固定和变化这两类情况进行了仿真设计,前一类仿真结果表明:当遮挡比为15,切断比为1.5时,远场强度峰值提高了40%。后一类情况的仿真结果则表明:遮挡比越大,系统透过率和远场峰值强度越高,远场光束的主瓣宽度和强度峰值相对增量则分别变窄和变低;切断比越大,强度峰值的相对增量也越大。该方法提高了卫星光通信系统发射端的发射效率,同时也改善了接收端的光束质量。 In satellite optical communication transmitter with reflective telescope of two-mirror on axis.a large mount of the transmitted energy will be obscured by the secondary mirror.A novel method based on diffractive optical elements (DOE) is proposed for offsetting it.The beam centrally obscured is reshaped to annulus beam by a diffractive beam shaper and another phase corrector,as a result central obscuration is avoided.Numerical simulation is carried out with fixed obscuraction ratio and truncation ratio,and variation of them,respectively.Subsequent numerical simulation reveals that peak energy of far field is raised about forty percent under the condition of obscuration ratio is 15,and truncation ratio is 1.5.And numerical modelling of the latter are as follows:the larger obscuraction ratio,the larger transmission efficiency of whole system and peak energy of the far field,the narrower the width of main lobe of far field pattern,and the lower relative increment of peak energy;The larger truncation ratio,the larger relative increment of peak energy of beam in far field.This work can improve the emission efficiency of transmitter and energy density of receiver plane in satellite optical communication system.
出处 《中国激光》 EI CAS CSCD 北大核心 2009年第3期581-586,共6页 Chinese Journal of Lasers
基金 哈尔滨工业大学优秀团队支持计划
关键词 光通信 发射效率 衍射光学元件 光束整形 optical communication emission efficiency diffractive optical elements(DOE) beam shaping
  • 相关文献

参考文献17

  • 1[1]G.Oppenhauser,M.Wittig,A.Popescu.The european SILEX project and other advanced concepts for optical space communications[C].SPIE,1991,1522:2~13
  • 2[2]T.T.Nielsen,G.Oppenhauser.In orbit test result of an operational intersatellite link between ARTEMlS and SPOT4,SILEX[C].SPIE.2002,4635:1~15
  • 3[3]T.Jono,Y.Takayama,N.Kura et al..OICETS on-orbit laser communication experiments[C].SPIE,2006,6105:610503
  • 4[7]A.Yamamoto,T.Hori,T.Shimizu et al..Japanese first optical inter-orbit communications engineering test satellite (OICETS)[C].SPIE.1994,2210:30~38
  • 5[8]H.Hemmati,N.A.Page.Preliminary opto-mechanical design for the X2000 transceiver[C].SPIE,1999,3615:206~211
  • 6[9]M.Knapek.J.Horwath,N.Perlot et al..The DLR ground station in the optical payload experiment(STROPEX)--results of the atmospheric measurement instruments[C].SPJE,2006,6304:63041U
  • 7[10]W.N.Peters.A.M.Ledger.Techniques for matching laser TEM00 mode to obstructed circular aperture[J].Appl.Opt.,1970,9(6):1435~1442
  • 8[11]O.D.Christy.Dual-secondary mirror Cassegrain optical syetem[P].U.S.Patent:4,439,012,1984-03-27
  • 9[13]C.W.Chen.Re-imaging optical system including refractive and diffractive optical elements[P].U.S.Patent:5,287,218,1994-02-15
  • 10[14]R.N.Smartt,E.W.Cross.Advances in spherical-mirror telescopic systems design:application to large-aperature solar coronagraphs[J].Opt.Eng..2002,41(8):2055~2058

同被引文献55

引证文献5

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部