期刊文献+

基于小波神经网络的负载类型识别 被引量:5

Application of Wavelet Neural Network in Recognizing the Electrical Appliance
下载PDF
导出
摘要 结合小波变换和神经网络二者之间的优点,提出基于小波神经网络的负载模式识别的方法。其中小波函数代替非时变一般神经元隐层函数,用于提高网络对系统输入输出之间复杂关系的映射能力,相对于传统的模式识别方法,用小波变换对采集信号进行预处理,大大减少了神经网络的输入数目,从而简化了神经网络的结构和减少了它的训练时间。对实例电路识别结果表明,该方法能正确识别各种负载类型,准确率高。 Combining the time—frequency location and multiple·scale analyzation of wavelet transform(WT)with the nonlinear mapping and generalizing of neural network,a method of fault diagnosis in analogue circuits is proposed.Wavelet function is used to raise the mapping capability of network to the complex relation between the system input and output,and dynamical compensation is used to improve the modeling accuracy.Using wavelet decomposition to process the response drastically reduce the number of input fed to the neural network,simplifying its architecture and mininizing its training and processing time.Simulation results show that proposed fault diagnosis approach is feasible.
作者 冯洁 高蒙
出处 《电气技术》 2008年第2期47-49,共3页 Electrical Engineering
关键词 小波变换 神经网络 负载识别 神经元 wavelet transform neural network recognizing the electrical appliances neuron
  • 相关文献

参考文献7

  • 1[1]Ding X,Liu Y.Predicting Power Transformer Resonant Frequencies Using ANN[J].NAPS.1993.18(2):15-20.
  • 2[2]Bhattacharyya S K.Smith R E.Haskew TA.A Neural Network Approach to Transformer Fault Diagnosis Using Dissolved Gas Analysis Data[J].NAPS,1993,18(2):121-132.
  • 3[3]Jun Zhang G G.Walter YM and Wan N WL.Wavelet Neural Networks for Function Learning[J].IEEE Trans.On Signal Processing,1995,43(6):1485-1497.
  • 4李银国,张邦礼,曹长修.小波神经网络及其结构设计方法[J].模式识别与人工智能,1997,10(3):197-205. 被引量:52
  • 5[5]Rechenberg I.Ev01utionsstrategie'94IM].Stuttgart:Frommann-Holzboog.1994.
  • 6[6]Zhang Q,Benveniste A.Wavelet Networks[J].IEEE Trans on Neural Net,1992,3(11):889-898.
  • 7[7]CHEN Zhe,FENG Tian-jin.Research Developments and Prospects of Wavelet Neural Networks[J].Journal of ocean University of Qingdao,1999.29(4):663-68.

二级参考文献5

  • 1李银国,曹长修.神经元网络鲁棒能量函数的构造原理[J].模式识别与人工智能,1996,9(1):1-9. 被引量:7
  • 2李银国,博士学位论文,1996年
  • 3Zhang J,IEEE Trans Neural Netw,1995年,43卷,6期,1485页
  • 4张邦礼,重庆大学学报,1995年,18卷,6期,88页
  • 5Zhang Q,IEEE Trans Neural Netw,1992年,3卷,6期,889页

共引文献51

同被引文献27

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部