期刊文献+

人工神经网络和支持向量机在剪接位点识别上的应用 被引量:1

下载PDF
导出
摘要 将人工神经网络和支持向量机应用于剪接位点的识别中,并用标准测试数据集进行了5倍率交叉验证,测试结果显示人工神经网络和支持向量机对剪接位点的识别效果优于目前广泛使用的权阵列模型。
作者 杨艳
出处 《科技资讯》 2007年第22期215-216,共2页 Science & Technology Information
  • 相关文献

参考文献6

  • 1刘华富.基于模糊支持向量机的Web挖掘[J].计算机工程与应用,2007,43(10):189-190. 被引量:1
  • 2朱志宇,张冰,刘维亭.基于模糊支持向量机的语音识别方法[J].计算机工程,2006,32(2):180-182. 被引量:12
  • 3[5]Rogic S,Mackworth A K,Ouellette B F F.Evaluation of gene-finding programs on mammalian sequences.Genome Res.2001,11:817-832.
  • 4[6]Mathe C,Sagot M F,Schiex T,et al.Current methods of gene prediction,their strengths and weaknesses.Nucleic Acids Res.2002,30(19):4103-4117.
  • 5[7]Burge C,Karlin S.Prediction of complete gene structures in human genomic DNA.J.Mol.Biol.1997,268:78-94.
  • 6[8]Chang CC,Lin CJ.(2001) http://www.csie.ntu.edu.tw/_cjlin/libsvm.

二级参考文献14

  • 1傅向华,冯博琴,马兆丰,韩冰.基于核方法的Web挖掘研究[J].小型微型计算机系统,2005,26(5):727-731. 被引量:3
  • 2VapikVN 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 3Inoue T, Abe S. Fuzzy Support Vector Machine for Pattern Classification [C]. Proc. of IJCNN, Washington, 2001: 1449-1455.
  • 4Scholkopf B,Burges J C,Smola A J.Advances in kernel methods support vector learning[M].Cambridge,MA:MIT Press,1999.
  • 5Takagi T,Sugeno M.Fuzzy identification of systems and its applications to modeling and control[J].IEEE Trans Syst,Man,and Cybern,1985,SMC-15 (1):116-132.
  • 6Joachims T.Learing to classify text using support vector machines:methods,theory,and algorithms[M].Cambridge:Kluwer Academic,2002.
  • 7Joachims T.Text categorization with support vector machines[C]//Proceedings of European Conference on Machine Learning(ECML),1998.
  • 8Vapnik.V N.The nature of statistical learning theory[M].New York:Spriuger-Verlag,1995.
  • 9史笑兴,顾明亮,王太君,何振亚.一种时间规整算法在神经网络语音识别中的应用[J].东南大学学报(自然科学版),1999,29(5):47-51. 被引量:9
  • 10胡寿松,王源.基于支持向量机的非线性系统故障诊断[J].控制与决策,2001,16(5):617-620. 被引量:42

共引文献11

同被引文献17

  • 1范艳峰,徐朝辉.基于聚类遗传算法的神经网络规则抽取及应用[J].计算机工程与应用,2006,42(23):225-228. 被引量:2
  • 2赵林,杨保安,谢志鸣.一种新的基于结构的神经网络规则抽取方法[J].计算机应用与软件,2007,24(6):28-29. 被引量:2
  • 3TICKLE A B,ANDREWS R.The Truth will Come to Light:Directions and Challenges in Extracting the Knowledge Embedded within Trained Artificial Neural Networks[J].IEEE Transactions on Neural Networks,1998,9(6):1057-1068.
  • 4SETIONO R.Extracting Rules from Neural Networks by Pruning and Hidden-Unit Splitting[J].Neural Computation,1997,9(1):205-225.
  • 5SETIONO R.A Penalty Function Approach for Pruning Feedforward Neural Networks[J].Neural Computation,1997,9(1):195-204.
  • 6TOWELL G G,SHAVLIK J W.Extracting Refined Rules from Knowledge-Based Neural Networks[J].Machine Learning,1993,13(1):71-101.
  • 7LANG K J,WITBROCK M J.Learning to Tell Two Spirals Apart[C]∥Proceeding of the 1988 Connectionist Summer School.San Mateo,CA:Morgan Kaufmann,1988:52-59.
  • 8OOYEN A VAN.Improving the Covergence of the Back-Propagation Algorithm[J].Neural Networks,1992(5):465-471.
  • 9DHILLON I S,GUAN Y,KULIS B.Kernel K-Means:Spectral Clustering and Normalized Cuts[C]∥Proceeding of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM,2004:551-556.
  • 10徐义峰,陈春明,徐云青.一种改进的k-均值聚类算法[J].计算机应用与软件,2008,25(3):275-277. 被引量:41

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部