期刊文献+

生物芯片技术研究简况 被引量:4

Current research on the advance of Biochip technology
下载PDF
导出
摘要 生物芯片技术是基于生物大分子间相互作用的大规模并行分析方法 ,使得生命科学研究中所涉及的样品反应、检测、分析等过程得以连续化、集成化和微型化 ,现已成为当今生命科学研究领域发展最快的技术之一 .目前的生物芯片主要有核酸芯片、蛋白质芯片和糖体芯片等几大类 ;核酸芯片可测定基因表达情况或基因突变情况 ,同时也可测定多种疾病的相关基因 ;蛋白质芯片可直接从体液中检测特定蛋白质分子标记物 ,在肿瘤和传染性疾病的临床诊断领域里具有广阔的应用前景 ;糖体芯片则是最近创立的新型技术 。 The biochip technology is a novel parallel analytic method based on the recognition between bio-macromolecules, including nucleic acid and protein. Through the combination of technologies from micro-electronics, micro-mechanics and computer sciences it makes concatenation, integration and miniaturization of sample processing, signal detection and analysis in the study of life science biotechnique , It has become one of the fast developing biotechnology.Biochips can be divided into three categories: Gene chip, Protein chip, Sugar chip. The gene chip can determine the expression status of genes, or find the gene mutation, and it can be used for the diagnosis of inheritable diseases. Protein chip is to detect protein protein interactions, and it can directly measure the concentration of protein markers in blood sera and has a great value in diagnosis. Sugar chip technology is a new biotechnology arising in 2002. In the present age, the Lab-on-a-chip concept has been paid considerable attention.
出处 《中国计量学院学报》 2002年第3期229-234,共6页 Journal of China Jiliang University
关键词 生物芯片 基因芯片 蛋白质芯片 糖体芯片 芯片实验室 biochip gene chip protein chip sugar chip microarray Lab-on-a-chip
  • 相关文献

参考文献22

  • 1[1]MARSHALL A, HODGSON J. DNA chips: an array of possibilities[J]. Nat Biotechnol,1998(16):27-31.
  • 2[2]GOLUB T R, SLONIM D K, TAMAYO P, et al. Molecular classi-fication of cancer: class discovery and class prediction by gene expression monitoring[J]. Science, 1999,286(5439):531-537.
  • 3[3]MARTON M J, DEKISIS J L, BENNETT H A, et al. Drug target validation and identification of secondary drug target effects using DNA microarrays[J]. Nat Med,1998,4(11):1293-1301.
  • 4[4]POLLACK J R, PEROU C M. Genome-wide analysis of DNA copy-number changes using cDNA microarrays[J]. Nat Genet,1999,23:41-46.
  • 5[5]WANG K, GAN L, JEFFERY E, et al. Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray[J]. Gene,1999,229(1-2):101-108.
  • 6[6]WILSON M, DERISI L, KRISTENSEN H H, et al. Exploring drug-induced alterations in gene expression in mycobacterium tuberculosis by microarray hybridization[J]. PNAS,1999, 96:12833-12838.
  • 7[7]WALTER G, BUSSOW K. Protein arrays for gene expression and molecular interaction screening[J]. Curr Opin Microbiol, 2000, 3(3):298-302.
  • 8[8]MACBEATH G, SCHREIBER SL. Printing proteins as microarrays for high-throughfunction determination[J]. science,2000,289(5485):1760-1763.
  • 9[9]MENDOZA L G. MCQUARY P, MONGAN R, et al. High-throughput Microarray-Based Enzyme-linked Lmmunosorbent Assay(EIISA)[J]. BioTechniques 1999, 27(4):778-788.
  • 10[10]LUEKING A, BENTING J,LECAT S. Protein espressing in drosophilaschneider cells[J]. Anaiytical Biochemistry,2000,278:123-131.

同被引文献43

  • 1蔡骋,张明,朱俊平.基于压缩感知理论的杂草种子分类识别[J].中国科学:信息科学,2010,40(S1):160-172. 被引量:16
  • 2张悦琴.关于计量单位向量子基准发展的趋势[J].中国计量学院学报,1991,2(1):93-99. 被引量:1
  • 3冯会真,夏哲雷,林志一.基于神经网络的图像边缘检测方法[J].中国计量学院学报,2006,17(4):289-291. 被引量:25
  • 4Chen, X. L. Zheng, Y. G. Shen, Y. C..A new method for production of valienamine with microbial degradation of acarbose[J].中国生物学文摘,2007,21(1):18-18. 被引量:2
  • 5LANDER E S. Array of hope[J]. Nature Genetics, 1999, 21(1) :3-4.
  • 6HANSEN L K, SALAMON P. Neural network ensembles[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(10):993-1001.
  • 7ULF J, TUVE L, LARS N. The importance of diversity in neural network ensembles: An empirical investigation[C]//Proceedings of International Joint Conference on Neural Networks. USA : IEEE Press, 2007 : 12-17.
  • 8GOLUB T R, SLONIM D K, TAMAYO P, et al. Class discovery and class prediction by gene expression monitoring[J]. Science, 1999,286 : 531-537.
  • 9MODEL F, ADORJaN P, OLEK A, PIEPENBROCK, et al. Feature selection for DNA methylation based cancer elassification[J]. Bioinformatics, 2001,17(1) : 157-164.
  • 10WANGY H, MAKEDONFS, JAMESCF, etal. HykGene: A hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data[J]. Bioinformatics, 2005,21 (8) : 1530-1537.

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部