期刊文献+

ARTIFICIAL NEURAL NETWORK AND FUZZY LOGIC CONTROLLER FOR GTAW MODELING AND CONTROL 被引量:3

ARTIFICIAL NEURAL NETWORK AND FUZZY LOGIC CONTROLLER FOR GTAW MODELING AND CONTROL
下载PDF
导出
摘要 An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately. An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately.
出处 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第1期53-56,共4页 中国机械工程学报(英文版)
基金 National Natural Science Foundation of China and Provincial Natural Science Foundafion of Guangdong, China.
关键词 Artificial neural network Fuzzy logic control Weld pool depth Seamtracking Artificial neural network Fuzzy logic control Weld pool depth Seamtracking
  • 相关文献

参考文献3

  • 1[1]Von Hofe, Detlef W. Advanced joining technologies. Schweissen and Schneiden/Welding and Cutting, 2000, 52(9): 195~200
  • 2高向东,黄石生.弧焊过程中的人工神经网络焊缝检测技术[J].焊接学报,1998,19(S1):122-128. 被引量:13
  • 3[3]Gao Xiangdong, Motoji Y, Akira M. Application of fuzzy logic controller in the seam tracking of arc-welding robot. In:IECON Proceedings of the 23rd Annual International Conference on Industrial Electronics, Control, and Instrumentation. New Orleans, LA, USA, 1997, (3): 1 367~1 372

共引文献12

同被引文献31

  • 1岳建锋,李亮玉,王天琪,武宝林.基于正面焊接多信息融合的GMAW熔透控制[J].机械工程学报,2009,45(11):283-287. 被引量:9
  • 2闫志鸿,张广军,邱美珍,高洪明,吴林.脉冲熔化极气体保护焊熔池图像的检测与处理[J].焊接学报,2005,26(2):37-40. 被引量:33
  • 3Farson D, Richardson R, Li X. Infrared measurement of base metal temperature in gas tungsten arc welding [ J ]. Welding Journal, 1998,77 (9) :396 -401.
  • 4Nagarajan S, Banerjee P, Chen W,et al. Control of the weld- ing process using infrared sensors[ J]. IEEE Transactions on Robotics and Automation, 1992,8 ( 1 ) :86 - 93.
  • 5Rokhlin S I, Guu A C. Computerized radiographic sensing and control of an arc welding process [ J ]. Welding Journal, 1990,69(3) :83 -95.
  • 6Lim T G, Cho H S. Estimation of weld pool sizes in GMA welding process using neural networks [ J ]. Journal of Sys- tems and Control Engineering, 1993,207( 1 ) :15 -26.
  • 7LIM T G,CHO H S. Estimation of weld pool sizes in GMA welding process using neural networks[J]. Journal of Systems and Control Engineering,1993,207(1):15-26.
  • 8CHEN S B,WU L,WANG Q L. Self-learning fuzzy neural networks for control of uncertain systems with time delays[J]. IEEE Transaction on Systems,Man,and Cybernetics-Part B:Cybernetics,1997,27(1):142-148.
  • 9李云峰,赵熹华,李永强.Vision-based detection of weld pool width in TIG welding of copper-clad aluminum cable[J].China Welding,2007,16(3):27-31. 被引量:5
  • 10Suga Y, Takenaka D. Automatic control of penetration by monitoring reverse side shape of molten pool in all position welding of fixed pipes[J]. Proceedings of the International Offshore and Polar Engineering Conference, 2001 (4): 286-291.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部