摘要
On the assumption that the vortex and the vertical velocity component of the current are small, a mild-slope equation for wave propagation on non-uniform flows is deduced from the basic hydrodynamic equations, with the terms of (V(h)h)(2) and V(h)(2)h included in the equation. The terms of bottom friction, wind energy input and wave nonlinearity are also introduced into the equation. The wind energy input functions for wind waves and swells are separately considered by adopting Wen's (1989) empirical formula for wind waves and Snyder's observation results for swells. Thus, an extended mild-slope equation is obtained, in which the effects of refraction, diffraction, reflection, current, bottom friction, wind energy input and wave nonlinearity are considered synthetically.
On the assumption that the vortex and the vertical velocity component of the current are small, a mild-slope equation for wave propagation on non-uniform flows is deduced from the basic hydrodynamic equations, with the terms of (V(h)h)(2) and V(h)(2)h included in the equation. The terms of bottom friction, wind energy input and wave nonlinearity are also introduced into the equation. The wind energy input functions for wind waves and swells are separately considered by adopting Wen's (1989) empirical formula for wind waves and Snyder's observation results for swells. Thus, an extended mild-slope equation is obtained, in which the effects of refraction, diffraction, reflection, current, bottom friction, wind energy input and wave nonlinearity are considered synthetically.