摘要
在遵循复合材料中各夹杂相互影响的条件下,构造呈双周期分布且相互影响的椭圆形刚性夹杂模型的复应力函数,采用复变函数的依次保角映射方法,达到满足各个夹杂的边界条件,利用围线积分将求解方程组化为线性代数方程组,推导出了椭圆形刚性夹杂呈双周期分布的界面应力解析表达式,并讨论了夹杂间距对界面应力最大值(应力集中系数)的影响规律,描绘出了曲线.
According to the important principle of interaction among the inclusions in the composite micro-mechanics, we construct complex stress functions reflecting the interaction of doubly peri-odical elliptical rigid inclusions distributed in the isotropic matrix. It can satisfy boundary condition of every inclusion. By circulation integral, the linear algebraic equations are solved. Under the load of and-plane shear in the infinite plane of isotropic elastic matrix, the interface stress formula and the interface stress maximum values with the distance between the adjacent inclusions have been obtained.
出处
《装甲兵工程学院学报》
2002年第2期16-21,共6页
Journal of Academy of Armored Force Engineering
关键词
颗粒增强
椭圆形刚性夹杂
双周期分布
平面弹性
夹杂间距
界面强度
particle-reinforced
elliptical rigid inclusions
doubly periodical distribution
elastic plane
distance between the adjacent inclusions
interface stress