期刊文献+

蚁群算法在学生成绩管理系统中的应用:分类规则挖掘算法的实现

Mining Classification Rule Based on Colony Algorithm:Applied in Student Scores Management Database
下载PDF
导出
摘要 本文采用一种基于蚁群算法的分类规则挖掘算法,其特征实质上是一种序列覆盖算法。在具体的形式化分析和描述中,以学生成绩系统分析为例,给出了蚁群算法中的蚂蚁个体运动规则和基于蚁群算法的分类规则挖掘算法,按顺序让蚁群搜索规则,移去它覆盖的数据,并不断加以重复,直到搜索完所有的类别属性,且使剩余数据在最小范围内,从而得到一组规则。在对其进行规则剪枝后,最后得到一组最优规则。 The paper proposed an algorithm based on ant colony algorithm for mining classification rule from the Student Scores Management Database. Let some ants to mine classification rule and then valuate it, prune it, every time choose the best rule and abandon the bad one. Repeat this process and then get a series of rules according to the initialized database.
出处 《系统仿真技术》 2005年第3期177-182,共6页 System Simulation Technology
基金 国家自然科学基金(60104004) 上海市教委教育科学研究重点项目(A0401)资助
关键词 蚁群算法 分类规则 剪枝系数 区间数据库 colony algorithm classification rule
  • 相关文献

参考文献4

二级参考文献69

  • 1[11]Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [ A ].Proc. Congress on Evolutionary Computation[ C ]. Seonl, Korea. Piscataway, NJ: IEEE Service Center,27 - 30 May 2001.1.101 - 106.
  • 2[12]Jacques Riget,Jakob S Vesterstrom. A diversity-guided particle swarm optimization-the ARPSO [ DB/OL ]. http://citeseer. nj. nec. com/riget02diversityguided. html.
  • 3[13]Lovbjerg M, Krink T. Extending particle swarms with self-organized criticality[ A ]. Proceedings of the Fourth Congress on evolutionary computation (CEC-2002) [ C ]. Honolulu, HI USA, 2002.2. 1588 -1593.
  • 4[14]Al-kazemi B, Mohan C K. Multi-phase generalization of the particle swarm optimization algorithm[A]. Proceedings of the 2002 Congress on Evolutionary Computation[ C ]. Honolulu, HI USA, 12 - 17 May 2002.1.489 - 494.
  • 5[15]Krink T, Vesterstrom J S, Riget J. Particle swarm optimisation with spatial particle extension[ A]. Proceedings of the Fourth Congress on Evolutionary Computation (CEC-2002) [ C ]. Honolulu, HI USA, 2002.2.1474- 1479.
  • 6[16]Kennedy J, Mendes R. Population structure and particle swarm performance[ A]. Proceedings of the IEEE Congress on Evolutionary Computation ( CEC 2002 ) [ C ]. Honolulu, HI USA, 12 - 17 May 2002.2.1671- 1676.
  • 7[17]M Lvbjerg, T K Rasmussen, T Krink. Hybrid particle swarm optimiser with breeding and subpopulations[ A ]. Proceedings of the Genetic and Evolutionary Computation Conference [ C ]. San Francisco, California,2001.469 - 476.
  • 8[18]Xiaohui Hu, Eberhart,R C.Adaptive particle swarm optimization:detection and response to dynamic systems[ A ]. Proceedings of the 2002 Congress on Evolutionary Computation[ C ]. Honolulu, HI USA, 2002.2.1666 - 1670.
  • 9[19]M Dorigo, L M Gambardella. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997,1(1 ) :53 - 66.
  • 10[20]T Stutzle, H H Hoos. MAX MIN Ant system[ J]. Journal of Future Generation Computer Systems,2000,16:889 - 914.

共引文献188

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部