期刊文献+

辐射传输方程中非对称因子的估算 被引量:1

Evaluation of the asymmetry factor in the radiative transfer equation
原文传递
导出
摘要 非对称因子是辐射传输理论中一个十分重要的参数.基于Mie理论,对单分散系粒子单次散射的非对称因子进行了研究和计算.结果证实:在折射率实部一定情形下,非对称因子有确定的极限值,例如,实折射率为1.33时,该极限值为0.884 7;对实际大气而言,非对称因子一般不会超过0.8.对辐射传榆计算中非对称因子的取值对Mie像函数、H-G像函数和H-G*像函数的影响进行了比较,结果表明:在相同的非对称因子下,H-G*像函数更接近Mie散射像函数. The asymmetry factor has played an important role in dealing with the Radiative Transfer Equation (RTE).The asymmetry factor of light scattering of spherical particles is studied and calculated based on the Mie theory for size parameters in 0~30 and 0~2000 for different refractive indexes.The results show that its value has a limit corresponded to a certain real refractive index,for example,this limit equals to about 0.8847 while|m|=1.33. Influences of the asymmetry factor on RTE are taken into account and discussed.It is shown that an asymmetry factor in RTE should usually be less than 0.8 for real atmosphere.Comparison are also made for different asymmetry factors effecting on scattering phase function and revealed that there are less differences between modified Henyey-Greestein(H-G~*)than Henyey-Greenstein(H-G)and Mie phase function for a certain asymmetry factor.
出处 《红外与激光工程》 EI CSCD 北大核心 2006年第z4期483-487,共5页 Infrared and Laser Engineering
基金 国家自然科学基金委-中国工程物理研究院联合基金(10376007)
关键词 非对称因子 散射像函数 辐射传输方程 单次散射 MIE理论 Single scattering Asymmetry factor Radiative transfer equation Scattering phase function Mie theory
  • 相关文献

参考文献8

  • 1[1]LIOU K N.An introduction to atmospheric radtiation[M].Academic Press,1980.
  • 2[2]吴健,杨春平,刘建斌.大气中的光传播理论[M].成都:电子科技大学出版社,2005.
  • 3[3]TOUBLANC D.Henyey-Greenstein and Mie phase function in Monte-Carlo radiative transfer computations[J].Appl opt,1996,35:3270-3274.
  • 4[4]HENYEY L G,GREENSTEINJ L.Diffuse radiation in the galaxy[J].Astrophscial J,1941,93:70-83.
  • 5[5]HALTRIN V LOne parameter two-term Henyey-Greenstein phase function for light scattering in seawater[J].Appl Opt,2002,41:1022-1028.
  • 6[6]VANDEHULST H C.Light scattering by small particles[M].New York:JOHN WILEY SONS Inc.,1957.
  • 7[7]WISCOMBE W.Improved Mie scattering algorithms[J].Appl opt,1980,19(9):1505-1509.
  • 8王小东,吴健,邱荣,杨春平,刘建斌.MIE散射系数的改进算法[J].光电工程,2006,33(3):24-27. 被引量:18

二级参考文献8

  • 1J.V.DAVE.Scattering of Visible Light by Large water Sphere[J].Appl.Opt,1969,8(2):155-161.
  • 2W.J.WISCOMBE.Improved Mie scattering algorithm[J].Appl.Opt,1980,19(9):1505-1509.
  • 3余其铮 马国强.MIE 散射算法的改进[J].哈尔滨工业大学学报,1987,1(3):20-26.
  • 4V.D.HULST.Light scattering by small particles[M].New York:Wiley,1957.
  • 5C.F.BORHEN.Absorption and scattering of light by small particles[M].New York:Wiley,1983.
  • 6W.J.LENTZ.Generating Bessel Functions in MIE Scattering Calculation Using Continued Fraction[J].Appl.Opt,1976,15(3):668-671.
  • 7杨晔,张镇西,蒋大宗.Mie散射物理量的数值计算[J].应用光学,1997,18(4):17-19. 被引量:31
  • 8王式民,朱震,叶茂,陆勇,陆永刚,徐益谦.光散射粒度测量中Mie理论两种改进的数值计算方法[J].计量学报,1999,20(4):279-285. 被引量:20

共引文献17

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部