期刊文献+

通过Boosting改进基于EP的分类器

Improving EP-Based Classifiers via Boosting
下载PDF
导出
摘要 显露模式(EP)是支持度从一个数据集到另一个数据集显著提高的项集. EP具有很强的区分能力,可以建立很好的分类器.提出了一种通过Boosting改进基于EP的分类器的算法BoostEP. BoostEP使用Boosting技术建立多个基于EP的基分类器形成组合分类器,并对每个基分类器预测加权投票得到未知样本的类标号.在UCI机器学习数据库的21个基准数据集上的实验表明,BoostEP的分类准确率足以与NB,C4.5,CBA和CAEP等优秀分类法相媲美.
出处 《计算机研究与发展》 EI CSCD 北大核心 2007年第z2期214-218,共5页 Journal of Computer Research and Development
基金 河南省自然科学基金项目(0211050100)
  • 相关文献

参考文献13

  • 1[1]J Han,M Kamber.Data Mining Concepts and Techniques,2nd Ed.San Francisco:Morgan Kaufmann,2006
  • 2[2]G Dong,J Li.Efficient mining of emerging patterns:Discovering trends and differences.In:Proc of KDD'99,1999.15-18
  • 3[3]G Dong,X Zhang,L Wong,et al.CAEP:Classification by aggregating emerging patterns.The 2nd Int'l Conf on Discovery Science (DS'99),Tokyo,Japan,1999
  • 4[4]L Breiman.Bagging predictors.Machine Learning,1996,24(2):123-140
  • 5[5]M Keans,L G Valiant.Learning Boolean formulae or factoring.Havard University Aiken Computation Laboratory,Tech Rep:TR-1488,1988
  • 6[6]W Fan,S J Stolfo,J Zhang,et al.AdaCost:Misclassification cost-sensitive boosting.ICML'99,Bled,Slovenia,1999
  • 7[7]Y Freund,R E Schapire.A decision-theoretic generalization of on-line learning and an application to boosting.Journal of Computer and System Sciences,1997,55(1):119-139
  • 8[8]H Fan,M Fan,K Ramamohanarao,et al.Further improving emerging pattern based classifiers via bagging.In:Proc of PAKDD2006,Lecture Notes in Computer Science 3918.Berlin:Springer Verlag,2006.91-96
  • 9范明,刘孟旭,赵红领.一种基于基本显露模式的分类算法[J].计算机科学,2004,31(11):211-214. 被引量:11
  • 10范明 魏芳.挖掘基本显露模式用于分类[J].计算机科学,2004,31:207-309.

二级参考文献10

  • 1Blake C, Merz C. UCI repository of machine learning databases.1998 [http://www. ics. uci. edu/- mlearn/ MLRepository.html]. Irvine,CA: University of California,Department of Information and Computer Science
  • 2Dong G,Li J. Efficient mining of emerging patterns: Discovering trends and differences. In: Proc. of KDD′99, San Diego, USA,Sept. 1999.15-18
  • 3Dong G,Zhang X,Wong L,Li J. CAEP: Classification by Aggregating emerging patterns. In:Proc. of the 2nd Int′l Conf. On Discovery Science (DS′99) ,Tokyo,Japan,Dec. 1999.30-42
  • 4Fan H,Ramamohanarao K. Bayesian Approach to use Emerging Patterns for Classification. In:Proc of 14th Australasian Database Conf. Feb. 2003. 39-48
  • 5Han J,Pei J,Yin Y. Mining frequent patterns without candidate generation. In:Proc. of the 2000 ACM-SIGMOD Intl. Conf. on Management of Data, May 2000. 1-2
  • 6Li J,Dong G, Ramamohanarao K. JEP-Classifier: Classification by Aggregating Jumping Emerging Patters. Knowledge and Information Systems, 2001,3(2): 131-145
  • 7Li J,Dong G. Ramamohanarao K. Making Use of the Most Expressive Jumping Emerging Patterns for Classification. In:Pro. of 2000 Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD′00) ,2000. 220-223
  • 8Li W,Han J,Pei J. CMAR: Accurate and efficient classification based on multiple class-association rules. In:ICDM′01,San Jose,CA,Nov. 2001. 369-376
  • 9Lin B, Hsu W, Ma Y. Integrating classification and association rule mining. In:KDD′98,New York,NY,Aug. 1998. 80-86
  • 10Zheng Z, Webb G I. Lazy learning of Bayesian rules. Machine Learing, 41:53-84

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部