期刊文献+

基于Duffing方程参数敏感性提取谐振型传感器频率的仿真研究 被引量:6

Simulation Research on Detection of Syntony Sensor′s Frequency Using Parameter Sensitive Property in Duffing Equation
下载PDF
导出
摘要 由于谐振型传感器在感测被测之量变化时 ,表现为谐振频率的偏移 ,因此 ,为提高传感器的分辨率和灵敏度 ,对探索频偏的精确测定很为重要 .本文首先对 Duffing方程进行仿真 ,指出 Duffing方程在从混沌状态到大周期转变时 ,同时具有幅值敏感性和频率敏感性 ,进一步提出频率敏感性可应用于传感器微弱频率变化的提取 .仿真表明该方法还能实现对不同频率变化精度的预性测量 ,文中还进一步分析了其理论基础 。 For enhancing sensitive and resolving power it is very important to explore the method to detect frequency varitation which is the syntony sensor′s output. It is pointed that Duffing equation express amplitude and frequency sensitive property when system transits from chaotic to great periodic motion and that frequency sensitive property fits for extraction of weak frequency variation through simulation. It is verified to realize flexible measure at different frequency variation precision through simulation. The theory basis is further analyzed and the standpoint about equivalent driven force is presented.
出处 《传感技术学报》 CAS CSCD 2002年第1期1-4,共4页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金(5 0 0 770 16)资助
关键词 谐振传感器 DUFFING方程 频率敏感性 预性测量 syntony sensor Duffing equation frequency sensitive property flexible measure
  • 相关文献

参考文献3

二级参考文献6

  • 1陈予恕,非线性动力学学报,1994年,1卷,2期,97页
  • 2刘曾荣,混沌的微扰判据,1994年,114页
  • 3王海期,非线性振动,1992年,230页
  • 4曾庆勇,微弱信号检测,1986年,1页
  • 5李志能,光子学报,1995年,24卷,Z1期,87页
  • 6师汉民,机械振动系统,1992年

共引文献113

同被引文献41

  • 1赵向阳,史百舟,刘君华.硅微谐振传感器微弱频率变化的提取新方法[J].仪器仪表学报,2001,22(z2):57-58. 被引量:2
  • 2曾启明,陈伟乐,谢志堂,王江.电力系统频率新的跟踪算法(英文)[J].中国电机工程学报,2004,24(6):70-72. 被引量:25
  • 3[1]刘秉正,彭建华.非线型动力学[M].北京:高等教育出版社,2004.
  • 4[5]戴逸松.微弱信号检测方法及仪器[M].北京:国防工业出版社,1991.33-79.
  • 5Wang Guanyu .The application of chaotic oscillators to weak signal detection[J].IEEE Transactions on Industrial Electronics,1999,46(2): 440-444.
  • 6Yung chiahsiao, Pi-Cheng Tung.Controlling chaos for nonautonomous systems by detecting unstable periodic orbits [J].Solitons and Fractals, 202,13: 1043~1051.
  • 7A.Venkatesan, S.Parthasarathy, M.Lakshmanan.Occurrence of multiple period-doubling bifurcation route to chaos in periodically pulsed chaotic dynamical systems [J].Chaos, Solitons and Fractals, 2003,18: 891~898.
  • 8SatishT S,Bukkapatnama,Soundar Kumara R T,Akhlesh Lakhtakia.The neighborhood method and its coupling with the wavelet method for signal separation of chaotic signals [J].Signal Processing, 2002, 82: 1351~1374.
  • 9Daolin Xu, Zhigang Li, Bishop Steven R et al.Estimation of periodic-like motions of chaotic evolutions using detected unstable periodic patterns [J].Pattern Recognition Letters, 2002, 23, 245~252.
  • 10Jose Alvarez-Ramirez, Gilberto Espinosa-paredes, Hector Puebla.Chaos control using small-amplitude damping signals [J].Physics Letters A ,2003, 196~205.

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部