期刊文献+

Research on the chemical adsorption precursor state of CaCl_2-NH_3 for adsorption refrigeration 被引量:5

Research on the chemical adsorption precursor state of CaCl_2-NH_3 for adsorption refrigeration
原文传递
导出
摘要 As a type of chemical adsorption working pair, the physical adsorption occurs first for CaCl2-NH3 because the effective reaction distance for van der Waals force is longer than that for chemical reaction force, and this physical adsorption state is named the precursor state of chemical adsorption. In order to get the different precursor states of CaCl2-NH3, the different distances between NH3 gas and Ca2+ are realized by the control of different phenomena of swelling and agglomeration in the process of adsorption. When the serious swelling exists while the agglomeration does not exist in the process of adsorption, experimental results show that the activated energy consumed by adsorption reaction increases for the reason of longer distance between Ca2+ and NH3, and at the same time the performance attenuation occurs in the repeated adsorption cycles. When the agglomeration occurs in the process of adsorption, the activated energy for the transition from precursor state to chemical adsorption decreases because the distance between NH3 gas and Ca2+ is shortened by the limited expansion space of adsorbent, and at the same time the performance attenuation does not occur. The adsorption refrigeration isobars are researched by the precursor state of chemical adsorption; results also show that the precursor state is a key factor for isobaric adsorption performance while the distribution of Ca2+ does not influence the permeation of NH3 gas in adsorbent. As a type of chemical adsorption working pair, the physical adsorption occurs first for CaCl2?NH3 because the effective reaction distance for van der Waals force is longer than that for chemical reaction force, and this physical adsorption state is named the precursor state of chemical adsorption. In order to get the different precursor states of CaCl2?NH3, the different distances between NH3 gas and Ca2+ are realized by the control of different phenomena of swelling and agglomeration in the process of adsorption. When the serious swelling exists while the agglomeration does not exist in the process of adsorption, experimental results show that the activated energy consumed by adsorption reaction increases for the reason of longer distance between Ca2+ and NH3, and at the same time the performance attenuation occurs in the repeated adsorption cycles. When the agglomeration occurs in the process of adsorption, the activated energy for the transition from precursor state to chemical adsorption decreases because the distance between NH3 gas and Ca2+ is shortened by the limited expansion space of adsorbent, and at the same time the performance attenuation does not occur. The adsorption refrigeration isobars are researched by the precursor state of chemical adsorption; results also show that the precursor state is a key factor for isobaric adsorption performance while the distribution of Ca2+ does not influence the permeation of NH3 gas in adsorbent.
出处 《Science China(Technological Sciences)》 SCIE EI CAS 2005年第1期70-82,共13页 中国科学(技术科学英文版)
关键词 refrigeration CHEMICAL adsorption PRECURSOR STATE of CHEMICAL adsorption attenuation ACTIVATED energy. refrigeration chemical adsorption precursor state of chemical adsorption attenuation activated energy
  • 相关文献

参考文献1

二级参考文献1

共引文献8

同被引文献16

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部