期刊文献+

平台罗经故障检测的BP神经网络 被引量:1

BP Neural Networks for Stabilized Gyrocompass Fault Detection
下载PDF
导出
摘要 选用合适的训练、选择BP神经网络结构、连接权系数的方法和船舶实航数据,建立BP神经网络.用同一艘船的另两段实航数据验证该神经网络的泛化性能,在其中一段数据中人为加入缓变故障信号,用以检验其对缓变故障的敏感性.结果表明,系统能够跟踪同一条船不同航行状态的动态特性,对缓变故障也相当敏感,适用于一般海况船舶正常航行时平台罗经故障检测. A certain method and a set of data from a ship when it voyaged over the East China Sea are used to determine the input delay and the numbers of hidden units of BP neural networks,and train them. And then,the generalization of BP neural networks is verified by making use of the other two sets of data of the same ship in different voyages,and the sensitivity to slow malfunction of stabilized gyrocompass is verified by adding factitious slow fault in one of the two sets of data. The determined BP neural networ...
出处 《郑州大学学报(理学版)》 CAS 北大核心 2009年第3期30-33,49,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 河南省自然科学基金资助项目 编号0411012700
关键词 平台罗经 故障检测 神经网络 stabilized gyrocompass fault detection neural networks
  • 相关文献

参考文献2

二级参考文献20

  • 1李凯,黄厚宽.一种基于聚类技术的选择性神经网络集成方法[J].计算机研究与发展,2005,42(4):594-598. 被引量:24
  • 2Napolitano M R, Neppach C, Casdorph V, et al. Neural-Network-Based scheme for sensor failure detection, identification, and accommodation [ J ]. Journal of Guidance,Control, and Dynamics, 1995,18 (6) : 1280 - 1286.
  • 3Homik K,Stinchcombe M ,White H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks [ J ]. Neural Networks, 1990,3(3) :551-560.
  • 4Elsken T. Even on finite test sets smaller nets may perform better[ J ]. Neural Networks, 1997,10 (2) :369 - 385.
  • 5Nguyen,D. Widrow, B. Improving the Learning Speed of 2-Layer Neural Networks by Choosing Initial Values of the Adaptive Weights ,Proceedings of the International Joint Conference on Neural Networks, 1990, ( IJCNN' 90), III-21-26.
  • 6Russell R. Pruning algorithms.-a survey[ J]. IEEE Transaction on Neural Networks, 1993,4 (5) :740 -747.
  • 7Syozo Y. Convergence suppression and divergence facilitation: minimum and joint use of hidden units by multiple outputs [J]. Neural Networks, 1997,10 (2) :353 - 367.
  • 8Anders U, Korn O. Model selection in neural networks [ J ].Neural Networks, 1999,12 (2) :309 - 323.
  • 9HANSEN L K,SALAMON P.Neural network ensembles[J].IEEE Trans Pattern Analysis and Machine Intelligence,1990,12 (10):993-1001.
  • 10SCHAPIRE R E.The strength of weak learnability[J].Machine Learning,1990,5(2):197-227.

共引文献2

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部