摘要
It has been proved to be a difficult problem to determine directly trapping pressure of fluid inclusions. Recently, PVT simulation softwares have been applied to simulating the trapping pressure of petroleum inclusions in reservoir rocks, but the reported methods have many limita- tions in practice. In this paper, a method is suggested to calculating the trapping pressure and temperature of fluid inclusions by combining the isochore equations of a gas-bearing aqueous inclusion with its coeval petroleum inclusions. A case study was conducted by this method for fluid inclusions occurring in the Upper-Paleozoic Shanxi Formation reservoir sandstones from the Ordos Basin. The results show that the trapping pressure of these inclusions ranges from 21 to 32 MPa, which is 6─7 MPa higher than their minimum trapping pressure although the trapping temperature is only 2─3℃ higher than the homogenization temperature. The trapping pressure and temperature of the fluid inclusions decrease from southern area to northern area of the basin. The trapping pressure is obviously lower than the state water pressures when the inclusions formed. These data are consistent with the regional geological and geochemical conditions of the basin when the deep basin gas trap formed.
It has been proved to be a difficult problem to determine directly trapping pressure of fluid inclusions. Recently, PVT simulation softwares have been applied to simulating the trapping pressure of petroleum inclusions in reservoir rocks, but the reported methods have many limita- tions in practice. In this paper, a method is suggested to calculating the trapping pressure and temperature of fluid inclusions by combining the isochore equations of a gas-bearing aqueous inclusion with its coeval petroleum inclusions. A case study was conducted by this method for fluid inclusions occurring in the Upper-Paleozoic Shanxi Formation reservoir sandstones from the Ordos Basin. The results show that the trapping pressure of these inclusions ranges from 21 to 32 MPa, which is 6─7 MPa higher than their minimum trapping pressure although the trapping temperature is only 2─3℃ higher than the homogenization temperature. The trapping pressure and temperature of the fluid inclusions decrease from southern area to northern area of the basin. The trapping pressure is obviously lower than the state water pressures when the inclusions formed. These data are consistent with the regional geological and geochemical conditions of the basin when the deep basin gas trap formed.
作者
MI Jingkui1,2,XIAO Xianming1,LIU Dehan1,& SHEN Jiagui1 1.State Key Laboratory of Organic Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China
2.Institute of Sedimentary Mineral and Resources,Department of Civil Engineering,Xiangtan Polytechnic University,Xiangtan 411201,China