期刊文献+

基于PSO-WNN的大坝安全监控模型研究

Study on Dam Safety Monitoring Model Based on PSO-WNN
原文传递
导出
摘要 针对大坝安全监控中小波神经网络模型(WNN)训练时间较长且易陷入局部极小值的缺陷,提出采用粒子群优化算法(PSO)取代传统的梯度下降法对小波神经网络中的各参数进行优化,建立了PSO-WNN模型并用于大坝安全监测的拟合和预报。实例结果表明,PSO-WNN模型收敛速度快、预测精度及稳定性高,为大坝变形监测分析提供了一种有效的新型建模方法。 The wavelet neural network(WNN) models applying for dam safety monitoring have some drawbacks which the training time is long and the calculations easily fall into local minimum.In order to overcome these defects,particle swarm optimization(PSO) algorithm is proposed to replace the traditional gradient-descent algorithm for optimizing parameters of wavelet neural network.The PSO-WNN model is established to apply for fitting and forecasting the monitoring data of dam deformation.The results show that the PSO...
出处 《水电能源科学》 北大核心 2010年第6期61-63,共3页 Water Resources and Power
基金 河海大学水文水资源与水利工程科学国家重点实验室专项基金资助项目(2009586012)
关键词 粒子群优化算法 小波神经网络 大坝变形监测 预报 安全监控模型 particle swarm optimization wavelet neural network dam deformation monitoring forecasting safety monitoring model
  • 相关文献

参考文献8

二级参考文献30

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2杨杰,吴中如,顾冲时.大坝变形监测的BP网络模型与预报研究[J].西安理工大学学报,2001,17(1):25-29. 被引量:74
  • 3赵振宇 徐用懋.模糊理论和神经网络的基础与应用[M].北京,南宁:清华大学出版社,广西科学技术出版社,1997.105-106.
  • 4文靳.神经网络理论与应用研究[M].成都:西南交通大学出版社,1996..
  • 5[3]Kennecly M,Pchua L O. Neural networks for nonlinear programming[J]. IEE E,Trans,Circuits,1988,35:554-562.
  • 6[4]Aribshahi P. Fuzzy control of backpropagation[A]. IEEE Fuzzy’96,1996.96 7-972.
  • 7[5]Derrick H,Widrow B. Neural networks for self-learning control system[J ]. IEEE Control Systems Mangzine,1990,4(1):18-23.
  • 8[6]Khalid M,Omatu S. A neural network based control scheme with an adaptive neural model reference structure[A]. IJCNN,Singapore,1991.2128-2133.
  • 9[7]Wilis N J. Artificial neural networks in process estimation and control[ J]. Automatica,1992,28:1181-1187.
  • 10[8]Luo Li,Luo Qiang,Hu Shouren. A high-speed learning algorithm for BP ne ural networks[A]. International Conference on Neural Networks and Signal Proce ssing(Vol.1)[C]. ICNNSP’95, Nanjing,1995.202-205.

共引文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部