摘要
利用锥理论和耦合上下解方法,研究半序Banach空间中不具有连续性和紧性条件的非线性二元算子方程解的存在性 和唯一性,并给出迭代序列收敛速度的估计,所得结果是某些已有结果的本质改进.最后把结果成功地应用于超线性二阶常微分 方程的两点边值问题.
With the cone theory and coulped upper-lower solution method, the existence and uniqueness of solution for the nonilnear binary operator equations which do not possess any continuity and compactness conditions in partial ordering Banach space are studied, and the estimates of convergence rate for iterative sequence are also given. The results obtained in this paper essentially improve upon some known results. Finally,the results are suc-cefully applied to the twopoint boundary value problems of superlinear second order ordinary differential equations.
出处
《商丘职业技术学院学报》
2003年第6期14-16,共3页
JOURNAL OF SHANGQIU POLYTECHNIC
基金
商丘市科技攻关项目(20021125)
关键词
锥与半序
算子方程
迭代解法
cone and partial ordering
operalor equations
iterative solution