期刊文献+

基于混合PCA模型的多工况过程监控方法 被引量:4

Process Monitoring Method of Multiple Qperating Modes Based on PCA Mixture Model
原文传递
导出
摘要 传统的多变量统计过程监控方法一般都假设过程只运行在一个稳定工况下,但很多实际工业过程往往具有多工况特征。针对这一问题,提出一种基于混合PCA模型的多工况过程监控方法。将混合高斯模型和PCA相结合,用改进的EM算法估计模型的工况数以及各工况的分布参数和主元数,并构建归一化的统计量实现对多工况过程的监控。TE过程的仿真研究表明,所提出的方法相对传统PCA方法能更精确地估计各工况的统计特性,从而更准确及时地检测出多工况过程的各种故障。 The traditional multivariate statistical process control techniques rely on the assumption that the process has only one nominal operating mode.To the real industrial processes,with multiple operating conditions,a multimode process monitoring approach based on PCA mixture model is proposed.The Gaussian mixture model and the PCA method are combimed.An improved EM algorithm is used to cluster the process data to get the number of modes and corresponding parameters.A normalized statistics chart is defined to m...
出处 《控制工程》 CSCD 北大核心 2010年第4期553-556,560,共5页 Control Engineering of China
基金 国家自然科学基金资助项目(60974100 60904039) 国家高技术研究发展计划资助项目(2007AA04Z162)
关键词 混合PCA模型 多工况 统计监控 TE过程 PCA mixture model multiple operating modes statistical monitoring TE process
  • 相关文献

同被引文献32

  • 1谷雷,杨青,王大志.概率神经网络在化工过程故障检测中的应用[J].控制工程,2008,15(S1):128-130. 被引量:8
  • 2邹涛,王昕,李少远.基于混合逻辑的非线性系统多模型预测控制[J].自动化学报,2007,33(2):188-192. 被引量:18
  • 3Nandola N N,Bhartiya S.A multiple model approach for predictive control of nonlinear hybrid systems[J].Journal of Process Control,2008,18(2):131-148.
  • 4Patil B V,Bhartiya S,Nataraj P S V,Nandola N N.Multiple-model based predictive control of nonlinear hybrid systems based on global optimization using the Bernstein polynomial approach[J].Journal of Process Control,2012,22(2):423-435.
  • 5Zkan L O,Kothare M V.Stability analysis of a multi-model predictive control algorithm with application to control of chemical reactors[J].Journal of Process Control,2006,16(2):81-90.
  • 6Overloop P J,Weijs S,Dijkstra S.Multiple model predictive control on a drainage canal system[J].Control Engineering Practice,2008,16(5):531-540.
  • 7Liu J L.Process monitoring using Bayesian classification on PCA subspace[J].Industrial & Engineering Chemistry Research,2004,43(24):7815-7825.
  • 8Zhao S J,Zhang J,Xu Y M.Monitoring of processes with multiple operating modes through multiple principle component analysis models[J].Industrial & Engineering Chemistry Research,2004,43(22):7025-7035.
  • 9Yu J,Qin S J.Multimode Process monitoring with Bayesian inference-based finite Gaussian mixture models[J].AIChE Journal,2008,54(7):1811-1829.
  • 10Ma Jinwen,Wang Taijun,Xu Lei.A gradient BYY harmony learning rule on Gaussian mixture with automated model selection[J].Neuro Computing,2004,56:481-487.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部