摘要
Chalcone synthase A is a key enzyme in the anthocyanin biosynthesis pathway. Expression of chsA gene in transgenic Petunia hybrida resulted in flower color alterations and co-suppression of transgenes and endogenous genes. We fused the β-glucuronidase (uidA) gene to the C-terminal of chsA gene, and transferred the fusion gene into Petunia hybrida via Agrobacterium tumefaciens. GUS histochemical staining analysis showed that co-suppression occurred specifically during the development of flowers and co-suppression required the mutual interaction of endogenous genes and transgenes. RNA in situ hybridization analysis suggested that co-suppression occurred in the entire plant, and RNA degradation occurred in the cytoplasm.
Chalcone synthase A is a key enzyme in the anthocyanin biosynthesis pathway. Expression of chsA gene in transgenic Petunia hybrida resulted in flower color alterations and co-suppression of transgenes and endogenous genes. We fused the β-glucuronidase (uidA) gene to the C-terminal of chsA gene, and transferred the fusion gene into Petunia hybrida via Agrobac-terium tumefaciens. GUS histochemical staining analysis showed that co-suppression occurred specifically during the development of flowers and co-suppression required the mutual interaction of endogenous genes and transgenes. RNA in situ hybridization analysis suggested that co-suppression occurred in the entire plant, and RNA degradation occurred in the cytoplasm.
基金
the National Natural Science Foundation of China (Grant No. 39670415), Yunnan Province-Peking University joint project (B9810K) and Shenzhen Science and Technology Bureau.