期刊文献+

Central limit theorem for integrated square error of kernel estimators of spherical density 被引量:4

Central limit theorem for integrated square error of kernel estimators of spherical density
原文传递
导出
摘要 LetX 1,…,X n be iid observations of a random variableX with probability density functionf(x) on the q-dimensional unit sphere Ωq in Rq+1,q ? 1. Let $f_n (x) = n^{ - 1} c(h)\sum\nolimits_{i = 1}^n {K[(1 - x'X_i )/h^2 ]} $ be a kernel estimator off(x). In this paper we establish a central limit theorem for integrated square error off n under some mild conditions. Let X1,…,Xn be iid observations of a random variable X with pr obab ility density function f(x) on the q-dimensional unit sphere Ωq I n Rq+1 ,q≥1. Let fn(x)=n-1 c(h)∑ni=1 K[(1-x′Xi)/ h2]be a kernel estimator of f(x). In this paper we establish a central limit theorem for integrated square error of fn under some mild conditions.
出处 《Science China Mathematics》 SCIE 2001年第4期474-483,共10页 中国科学:数学(英文版)
关键词 central limit theorem directional data kernel estimate integrated square error 中央限制定理;方向性的数据;核估计;综合方形的错误;
  • 相关文献

参考文献2

  • 1Brown,B. M.Martingale central limit theorems, Ann[].Mathematical Methods of Statistics.1971
  • 2Hall,P.Central limit theorem for integrated square error of multivariate nonparametric density estimators, J[].Journal of Multivariate Analysis.1984

同被引文献6

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部