摘要
AIM: To study the effects of aminoguanidine (AG) and two L-arginine analogues N(omega)-nitro-L-arginine methyl ester (L-NAME) and N(omega)-nitro-L-arginine (L-NNA) on nitric oxide (NO) production induced by cytokines (TNF-alpha, IL-1 beta, and IFN-gamma) and bacterial lipopolysaccharide (LPS) mixture (CM) in the cultured rat hepatocytes, and examine their mechanisms action. METHODS: Rat hepatocytes were incubated with AG, L-NAME, L-NNA, Actinomycin D (ActD) and dexamethasone in a medium containing CM (LPS plus TNF-alpha, IL-1 beta, and IFN-gamma) for 24h. NO production in the cultured supernatant was measured with the Griess reaction. Intracellular cGMP level was detected with radioimmunoassy. RESULTS: NO production was markedly blocked by AG and L-NAME in a dose-dependent manner under inflammatory stimuli condition triggered by CM in vitro. The rate of the maximum inhibitory effects of L-NAME (38.9%) was less potent than that obtained with AG(53.7%, P 【 0.05). There was no significant difference between the inhibitory effects of AG and two L-arginine analogues on intracellular cGMP accumulation in rat cultured hepatocytes. Non-specific NOS expression inhibitor dexamethasone (DEX)and iNOS mRNA transcriptional inhibitor ActD also significantly inhibited CM-induced NO production. AG(0.1 mmol x L(-1)) and ActD (0.2 ng x L(-1)) were equipotent in decreasing NO production induced by inflammatory stimuli in vitro, and both effects were more potent than that induced by non-selectivity NOS activity inhibitor L-NAME (0.1 mmol x L(-1)) under similar stimuli conditions (P【0.01). CONCLUSION: AG is a potent selective inhibitor of inducible isoform of NOS,and the mechanism of action may be not only competitive inhibition in the substrate level, but also the gene expression level in rat hepatocytes.
AIM To study the effects of aminoguanidine(AG) and two L-arginine analogues Nω-nitro-L-arginine methyl ester (L-NAME) and Nω-nitro-L-arginine (L-NNA) on nitric oxide (NO) productioninduced by cytokines (TNF-α, IL-11β, and IFN-γ)and bacterial lipopolysaccharide (LPS) mixture(CM) in the cultured rat hepatocytes, andexamine their mechanisms action.METHODS Rat hepatocytes were incubatedwith AG, L-NAME, L-NNA, Actinomycin D (ActD)and dexamethasene in a medium containing CM(LPS plus TNF-α, IL-1β, and IFN-γ) for 24 h. NOproduction in the cultured supernatant wasmeasured with the Griese reaction. IntracellularcGMP level was detected with radioimmunoasey.RESULTS NO production was markedlyblocked by AG and L-NAME in a dose-dependentmanner under inflammatory stimuli conditiontriggered by CM in vitro. The rate of themaximum inhibitory effects of L-NAME (38.9%)was less potent than that obtained with AG(53.7%, P<0.05). There was no significantdifference between the inhibitory effects of AGand two L-arginine analogues on intracellularcGMP accumulation in rat cultured hepatocytes.Non-specific NOS expression inhibitordexamethasone ( DEX ) and iNOS mRNAtranscriptional inhibitor ActD also significantlyinhibited CM-induced NO production. AG(0.1mmol.L-1) and ActD (0.2ng@Lt) wereequipotent in decreasing NO production inducedby inflammatory stimuli in vitro, and botheffects were more potent than that induced bynon-selectivity NOS activity inhibitor L-NAME(0. 1 mmol@ L- 1) under similar stimuli conditions(P<O.O1).CONCLUSION AG is a potent selectiveinhibitor of inducible isoform of NOS, and themechanism of action may be not onlycompetitive inhibition in the substrate level, butalso the gene expression level in rathepatocytes .
作者
Guo Liang Zhang Ye Hong Wang Hui Ling Teng Zhi Bin Lin Department of Pharmacology,School of Basic Medical Sciences,Beijing University,Beijiog 100083,ChinaDr.Guo Liang Zhang graduated from Xinxiang Medical College in 1982,got Ph.D.at Nagoya City University Medical School,Japan in 1994,finished postdoctoral research at Beijing Medical Univcrsity in 1996,now an associate professor of pharmacology,specialized in hepatic pharmacology,having 15 papers published.
基金
Project supported by the National Natural Science Foundation of China,No.39770861.and JANSSEN Science Research Foundation.