期刊文献+

A High-Mathematical Model Optimizing Cuttings Transport in Oil Drilling Engineering

A High-Mathematical Model Optimizing Cuttings Transport in Oil Drilling Engineering
下载PDF
导出
摘要 With special drilling operation equipment and specific conditions of geology, how does drilling fluid carry cuttings effectively? So far, it is still an urgent problem for drilling researchers to study. This work just aims at the actual engineering background to develop studying model. In this paper, according to non Newtonian fluid mechanics, the law of the solid liquid, two phase fluid flow and actual drilling engineering, the major factors affecting cuttings transport are drilling fluid velocity, hole inclination and fluid rheological properties. Getting a clear understanding of the law of drilling fluid and its cutting taking mechanism, this paper puts forward a model for analysis of field data and quantitative forecast of cutting taking capability of drilling fluid. The full scale annular test section was 6.1 m with 76 and 114 mm drillpipe in a 203 mm ID (wellbore diameter). Hole angle varied from 0° to 90°. With special drilling operation equipment and specific conditions of geology, how does drilling fluid carry cuttings effectively? So far, it is still an urgent problem for drilling researchers to study. This work just aims at the actual engineering background to develop studying model. In this paper, according to non Newtonian fluid mechanics, the law of the solid liquid, two phase fluid flow and actual drilling engineering, the major factors affecting cuttings transport are drilling fluid velocity, hole inclination and fluid rheological properties. Getting a clear understanding of the law of drilling fluid and its cutting taking mechanism, this paper puts forward a model for analysis of field data and quantitative forecast of cutting taking capability of drilling fluid. The full scale annular test section was 6.1 m with 76 and 114 mm drillpipe in a 203 mm ID (wellbore diameter). Hole angle varied from 0° to 90°.
出处 《Journal of China University of Geosciences》 SCIE CSCD 2001年第3期276-278,共3页 中国地质大学学报(英文版)
关键词 cuttings transport drilling fluid velocity hole inclination fluid rheological properties hole eccentricity. cuttings transport, drilling fluid velocity, hole inclination, fluid rheological properties, hole eccentricity.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部