期刊文献+

Injective Envelopes of a Hilbert C~*Module

Hilbert C~*-模的内射包络(英文)
下载PDF
导出
摘要 As in homology, the notion of injectivity is introduced in the category whose objects are Hilbert C * module over a C * algebra and whose morphism are bounded module operators. The definition of injective envelopes of an extension of a Hilbert C * modules over a C * algebra is introduced, and is characterized in terms of the injectivity and essence. It is shown that every Hilbert C * module has a unique (up to H isometrics) injective envelope if it exists. It is also shown that an extension of a Hilbert C * module is an injective envelope if and only if it is an injective and essential extension. Moreover, every Hilbert C * module over a W * algebra has a unique (up to H isometrics) injective envelope and the injective envelope of a Hilbert C * module H is maximal essential extension of H . 采用同调理论的观点探讨了C 代数上HilbertC 模作为对象和有界模算子作为态射构成的范畴 .研究C 代数上HilbertC 模扩张的内射性和内射包络 ,通过内射性和本性给出内射包络的特征描述 .证明了如果一个C 代数的HilbertC 模的内射包络存在 ,则在H等距意义下是唯一的 .其次给出了HilbertC 模的扩张是内射包络 ,当且仅当此扩张是内射的和本性的 .进一步得到在H等距意义下W 代数上的任何HilbertC 模都有唯一的一个内射包络而且HilbertC
出处 《Journal of Beijing Institute of Technology》 EI CAS 2001年第2期119-124,共6页 北京理工大学学报(英文版)
关键词 C * algebra Hilbert C * module injective envelope C*-代数 Hilbert C*-模 内射包络
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部