期刊文献+

Bayes网络最优近似下边缘分布的不变性

The Invariance of the Marginal Probability Distribution in the Optimal Approximate Bayesian Networks
下载PDF
导出
摘要 删除Bayes网络中的弧以减小网络结构的复杂性 ,从而降低概率推理算法的复杂度是一种对Bayes网络进行近似的方法 .该文讨论了在删除Bayes网络中的一条弧之后得到的最优近似概率分布和原概率分布之间的关系 ,证明了对满足一定条件的结点子集而言 ,其边缘概率分布在近似以后具有不变性 . As a model simplification method, arc removal is a way to approximate Bayesian networks by introducing additional conditional independency to simplify the network structures. Since the simplified network is no longer a I-map of the joint probability distribution, the best we can do is to approximate the probability distribution as close as possible under some criteria, such as minimal Kullback-Leibler divergence. Although the joint probability distribution of the whole random variables will be changed after we remove an arc, it is possible that the marginal probability distribution on some subset of the variables will not be changed. This paper proves the invariance of the marginal probability distribution on some set of the variables in the optimal approximate Bayesian networks.
作者 岳博 焦李成
出处 《计算机学报》 EI CSCD 北大核心 2004年第7期993-997,共5页 Chinese Journal of Computers
基金 国家自然科学基金 ( 60 0 73 0 5 3 )资助
关键词 BAYES网络 d-分割 弧的删除 边缘概率分布 Bayesian networks d-separation arc removal marginal probability distribution
  • 相关文献

参考文献10

  • 1Pearl J.. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, CA:Morgan Kaufmann, 1988
  • 2Kiiveri H., Speed T.P., Carlin J.B.. Recursive causal models. Journal of the Australian Mathematical Society(Series A), 1984, 36(1): 30~52
  • 3Cooper G.F.. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, 1990, 42(2): 393~405
  • 4Dagum P., Luby M.. Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 1993, 60(1): 141~153
  • 5Pearl J.. Fusion, propagation, and structuring in belief networks. Artificial Intelligence, 1986, 29(3):241~288
  • 6Kjaerulff U.. Reduction of computational complexity in Bayesian networks through removal of weak dependencies. In:Proceedings of the 10th Conference Uncertainty in Artificial Intelligence, Seattle, Washington, 1994, 374~382
  • 7van Engelen R.A.. Approximating Bayesian belief networks by arc removal. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(8): 916~920
  • 8van Engelen R.A.. Approximating Bayesian belief networks by arc removal. Department Computer Science, Leiden University, The Netherlands: Technical Report TR-96-15, 1996
  • 9Kullback S.. Information Theory and Statistics. New York:John Wiley, 1959
  • 10岳博,焦李成.对弧进行删除的Bayes网络近似方法[J].计算机学报,2000,23(11):1160-1165. 被引量:1

二级参考文献7

  • 11,Pearl J.Probabilistic Reasoning in Intelligent Systems:Networks of Plausible Inference.San Mateo,CA:Morgan Kaufmann,1988
  • 22,Cooper G F.The computational complexity of probabilistic inference using Bayesian belief networks.Artificial Intelligence,1990,42(2):393-405
  • 33,Dagum P,Luby M.Approximating probabilistic inference in Bayesian belief networks is NP-hard.Artificial Intelligence,1993,60(1):141-153
  • 44,Kjaerulff U.Reduction of computational complexity in Bayesian networks through removal of weak dependencies.In:Proceedings of the 10th Conference Uncertainty in Artificial Intelligence,Seattle,Washington,1994.374-382
  • 55,van Engelen R A.Approximating Bayesian belief networks by arc removal.IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(8):916-920
  • 66,van Engelen R A.Approximating Bayesian belief networks by arc removal.Department of Computer Science,Leiden University,The Netherlands:Technical Report TR-96-15,1996
  • 77,Kullback S.Information Theory and Statistics.New York:John Wiley,1959

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部