期刊文献+

基于LabVIEW的便携式房颤检测系统的研制 被引量:1

Development of Portable Atrial Fibrillation Detection System Based on LabVIEW
下载PDF
导出
摘要 目的:基于LabVIEW构建了便携式房颤检测系统。方法:系统采用上、下位机结构,上位机为笔记本电脑,下位机为心电采集模块,上下位机由USB口连接。提出概率密度函数法,研究R-R间期相空间重构后两点间距离的概率密度函数曲线形状并提取特征参数kn,可精确检测房颤。上位机软件采用LabVIEW编程,分为心电信号提取模块、R-R间期提取模块及概率密度函数法检测房颤模块。三个模块中设置了二个缓存,通过缓存模式保证三个模块并行运行,提高了系统的实时性。结果:实验表明该系统可快速准确检测房颤,只需60个R-R间期(不到1分钟的心电数据),检测房颤精度大于95%。结论:系统可用于房颤的快速、精确检测及房颤治疗后疗效的评估。 Objective: A portable Atrial Fibrillation(AF) detection system based on LabVIEW is developed.Methods: The system adopts master machine and slave machine architecture.The master machine is a laptop.The slave machine is an ECG acquisition module.The master and slave machines are connected by a USB port.Probability density function(PDF) method is proposed to study the PDF curves of the distance between two points in the reconstructed phase space of R-R intervals.The characteristic parameter kn is defined,which can detect atrial fibrillation with high precision.The master machine software is programmed with LabVIEW,which includes ECG acquisition module,R-R intervals pickup module and AF detection module.Two buffers are set up between three modules to ensure these modules can run parallelly,which enhance the real time capability of the system.Results: Experiments demonstrate that the system can detect AF quickly(only 60 R-R intervals are needed,which means less than one minute of ECG) and has high detection pricision(>95%).Conclusions: The system can be used to detect AF and to evaluate the therapeutic effect of AF treatment.
出处 《中国医学物理学杂志》 CSCD 2011年第4期2792-2795,共4页 Chinese Journal of Medical Physics
基金 上海高校特聘教授(东方学者)岗位计划资助
关键词 R-R间期 概率密度函数 相空间重构 房颤检测 R-R intervals probability density function phase space reconstruction atrial fibrillation detection
  • 相关文献

参考文献1

二级参考文献12

  • 1BENJAMIN E J, WOLF P A, AGOSTINO R B, et al. Impact of atrial fibrillation on the risk of death: the Framingham heart study[J]. Circulation, 1998, 98: 946-954.
  • 2MOODY G, MARK R. A new method for detecting atrial fibrillation using R-R intervals[J].Computers in Cardiology, 1983,10:227-230.
  • 3TATENO K, GLASS L. A method for detection of atrial fibrillation using R-R intervals[J]. Computers in Cardiology, 2000, 27:391-394.
  • 4LOGAN B, HEALEY J. Robust detection of atrial fibrillation for a long term telemonitoring system[J]. Computers in Cardiology, 2005, 32:619-622.
  • 5TATENO K, GLASS L. Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and △RR intervals[J]. Med Biol Eng Comp, 2001, 39:664-671.
  • 6ARTIS S G, MARK R G, MOODY G B. Detection of atrial fibrillation using artificial neural networks[J]. Computers in Cardiology, 1991, 173-176.
  • 7YOUNG B, BRODNICK D, SPAULDING R. Comparative study of a Hidden Markov Model detector for atrial fibrillation [J]. Neural Networks Signal Proc. IEEE, 1999: 468-476.
  • 8HINDRICKS G, PIORKOWSKI C, TANNER H, et al. Perception of atrial fibrillation before and after radiofrequeney catheter ablation[J]. Circulation, 2005,112,307-313.
  • 9CUESTA D, MICO P, ABOY M, et al. Biosignal laboratory, a software tool for biomedical signal processing and analysis[J]. Engineering in Medicine and Biology Society, 2003, 4, 3544-3547.
  • 10NICHOLS J M, NICHOLS J D. Attractor reconstruction for non-linear system: A methodological note[J]. Mathematical Biosciences, 2001, 171:21-32.

共引文献3

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部