期刊文献+

基于Volterra级数的核爆地震参数化非线性特征提取方法 被引量:2

Parametric and nonlinear feature extraction of nuclear explosions and earthquakes based on Volterra series
下载PDF
导出
摘要 地震时间序列的模型参数可以作为核爆地震信号识别的特征。现有基于ARMA(autoregressive moving average)模型参数的地震信号特征提取方法是一种线性方法,且只利用了信号的二阶统计信息,识别精度不高。为此,利用地震波的混沌特性,提出了一种核爆地震非线性特征提取方法:首先对地震波信号进行相空间重构,然后利用Volterra级数在重构的相空间内建立自适应预测模型,最后提取模型参数作为特征。在核爆地震分类实验中,非线性特征与线性特征相比,表现出更好的分类性能。研究结果表明:综合利用地震波信号的线性、非线性以及高阶统计信息对于核爆地震识别是非常重要的。 ARMA parameters can be used as features for discrimination between nuclear explosions and earthquakes.Current methods for feature extraction are linear and only takes advantage of the second-order statistic,so the classification accuracy of is not high.To solve this problem,a method for extracting nonlinear features of nuclear explosions and earthquakes was proposed based on the chaotic feature of seismic waves.Firstly,the phase space of seismic waves was reconstructed.Secondly,the adaptive prediction model based on Volterra series was established in the phase space.Finally,the model parameters were taken as the features of seismic samples.In the classification experiment of of nuclear explosions and earthquakes,nonlinear features obtained better performance than linear features.Investigated results show that the combination of linear,nonlinear and higher-order statistical information is critical for the classification of nuclear explosions and earthquakes.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2011年第3期237-242,共6页 Explosion and Shock Waves
关键词 爆炸力学 特征提取 非线性 VOLTERRA级数 混沌 核爆地震 mechanics of explosion feature extraction nonlinearity Volterra series chaos nuclear explosions and earthquakes
  • 相关文献

参考文献10

  • 1邢贞贞,韩立国,王宇,秦雪霏.高阶统计量方法在地震信号分析中的应用[J].吉林大学学报(地球科学版),2007,37(S1):139-142. 被引量:9
  • 2Arrowsmith M D,Arrowsmith S J,Stump B W,et al.A suite of discriminants for ground-truth mining events in the west-ern US and its implications for discrimination capability in Russia. Proceedings of 2008 Monitoring Research Review:Ground-Based Nuclear Explosion Monitoring Technologies . 2008
  • 3Benbrahim M,Benjelloun K,Ibenbrahim A,et al.A new approaches for seismic signals discrimination. Proceedingsof World Academy of Science,Engineering and Technology . 2007
  • 4Piotr F,,Hernando O.Consistent classification of non-stationary time series using stochastic wavelet representations. Journal of the American Statistical Association . 2009
  • 5Cercone J A,Foster V S,Clark W M.Application of neural networks to seismic signal discrimination research findings. PL-TR-94-2122 . 1994
  • 6Kalli R R.Nonlinear modeling of radio frequency circuits to estimate third-order nonlinear distortions. . 2008
  • 7Hafemeister D.Progress in CTBT monitoring since its 1999 senate defeat. Science and Global Security . 2007
  • 8Sakkalis V,Cassar T,Zervakis M,et al.Parametric and nonparametric EEG analysis for the evaluation of EEG activity inyoung children with controlled epilepsy. Computational Intelligence and Neuroscience . 2008
  • 9Liu D z,Red S,Wei Y k et al.Attractor analysis and its applications to seismic pattern recognition of nuclear explosion. Procetdings of IEEE Inernational Conference on Auoustics, Speech, and Signal Proccssing Conference . 1996
  • 10CARDEN E P,BROWNJOHN J M W.ARMA modelledtime-series classification for structural health monitoring ofcivil infrastructure. Mechanical Systems and Signal Pro-cessing . 2008

共引文献8

同被引文献22

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部