期刊文献+

多标度数据轮廓相似性的度量公理与计算 被引量:9

Measure axiom of outline similarity of multi-scale data and its calculation
下载PDF
导出
摘要 为了完善轮廓相似性度量的概念和计算,拓展轮廓相似度计算公式的应用,讨论了样本几何轮廓的序结构和表示定理,修正了轮廓相似性的度量公理与计算公式.在样本几何轮廓和"轮廓优"序的定义下,证明了"轮廓优"序的"严格弱序"结构,证明了在轮廓相似性分析问题中表示定理成立,奠定了约定"轮廓相似性度量公理"的逻辑基础,进而定义了样本几何轮廓的"相似度"序,证明了"相似度"序的"严格偏序"结构,并修正了轮廓相似度计算公式.使轮廓相似分析的概念与相似度计算公式能适应不同背景下的多标度数据分析的要求. In order to improve the concept and calculation of the measurement of outline similarity and widen the application of the outline similarity calculation formulae,this paper will discuss the sequence structure and representation theorem of sample geometric profile and adjust the measure axiom and calculation formulae of outline similarity.Under the definition of the sample geometric profile and the 'contour superior'sequence,this study proves the 'strictly weak sequence' structure of 'profile optimal' sequence and the representation theorem in the outline similarity analysis,which establish the logical basis for the measure axiom of outline similarity.Based on the study results,this study also defines the 'similar degree' sequence of sample geometry outline,and proves the 'strictly partial order' structure of 'similarity' sequence and revises the outline similarity calculation formulae.This study makes the concept of outline similarity analysis and similarity calculation formulae to be able to adapt to the requirements of multi-scale data analysis in different backgrounds.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2012年第5期797-800,共4页 Journal of Liaoning Technical University (Natural Science)
基金 教育部高校博士学科点专项科研基金资助项目(20102121110002)
关键词 多标度数据 几何轮廓 序结构 相似性度量公理 址联系数 标联系数 轮廓相似系数 轮廓相似度 multi-scale data geometric profile sequence structure similarity measure axiom address correlation coefficient scale correlation coefficient outline similarity coefficient outline similarity
  • 相关文献

参考文献10

二级参考文献25

  • 1董晓莉,顾成奎,王正欧.基于形态的时间序列相似性度量研究[J].电子与信息学报,2007,29(5):1228-1231. 被引量:34
  • 2张建业,潘泉,张鹏,梁建海.基于斜率表示的时间序列相似性度量方法[J].模式识别与人工智能,2007,20(2):271-274. 被引量:36
  • 3刘懿,鲍德沛,杨泽红,赵雁南,贾培发,王家钦.新型时间序列相似性度量方法研究[J].计算机应用研究,2007,24(5):112-114. 被引量:24
  • 4布洛克威尔PJ.时间序列的理论与方法[M].高等教育出版社,施普林格出版社,2001.
  • 5约翰逊RA.实用多元统计分析[M].清华大学出版社,2008.
  • 6Chung Fu-Lai,Fu Tak-Chung,Ng V,and Luk Rt W P.An evolutionary approach to pattern-based time series segmentation.IEEE Trans.on Evolutionary Computation,2004,8(5):471-489.
  • 7Shatkay H and Zkonik S B.Approximate queries and representations for large data sequences.in Proc.Int.Conf.Data Engeering.Los Alamitos,CA:IEEE Computer Society Press,1996:536-545.
  • 8Das G,Lin K I,and Mannila H.Rule discovery from time series,in Proc.ACM SIGKDD Int.Conf.Knowledge Discovery Data Mining,New York City,1998:16-22.
  • 9Kai O Y,Jia W,Zhou P,and Meng X.A new approach to transforming time series into symbolic sequences,in Proc.1st Joint BMES/EMBS Conf.,Atlanta,GA,USA Oct.1999,vol.2:974.
  • 10Keogh E and Pazzani M.An enhanced representation of time series which allows fast and accurate classification,clustering and relevance feedback.In proceedings of the 4th Int'l Conference on Knowledge Discovery and Data Mining.New York,NY,Aug 27-31.1998:239 241.

共引文献67

同被引文献54

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部