摘要
This paper constructs a new multiple relaxation time lattice Boltzmann model which is not only for the shocked compressible fluids,but also for the unshocked compressible fluids.To make the model work for unshocked compressible fluids,a key step is to modify the collision operators of energy flux so that the viscous coefficient in momentum equation is consistent with that in energy equation even in the unshocked system.The unnecessity of the modification for systems under strong shock is analyzed.The model is validated by some well-known benchmark tests,including thermal Couette flow,Riemann problem.The first system is unshocked and the latter is shocked.In both systems,the Prandtl number effects are checked.Satisfying agreements are obtained between new model results and analytical ones.
This paper constructs a new multiple relaxation time lattice Boltzmann model which is not only for the shocked compressible fluids,but also for the unshocked compressible fluids.To make the model work for unshocked compressible fluids,a key step is to modify the collision operators of energy flux so that the viscous coefficient in momentum equation is consistent with that in energy equation even in the unshocked system.The unnecessity of the modification for systems under strong shock is analyzed.The model is validated by some well-known benchmark tests,including thermal Couette flow,Riemann problem.The first system is unshocked and the latter is shocked.In both systems,the Prandtl number effects are checked.Satisfying agreements are obtained between new model results and analytical ones.
作者
Feng Chen,1 Aiguo Xu,2,Guangcai Zhang,2 and Yingjun Li 1,1) State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology (Beijing),Beijing 100083,China 2) National Key Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,P.O.Box 8009-26,Beijing 100088,China