摘要
考察了一类复合型非线性三阶三点边值问题的正解,其中非线性项f(t,u)可以在t=0,t=1及u=0处奇异.利用锥压缩与锥拉伸型的Krasnosel'skii不动点定理建立了几个正解存在定理.当f(t,u)超线性和次线性时,这些存在定理推广了现有的结论.
The positive solution is considered for a class of nonlinear third-order three-point boundary value problems of composite type,where the nonlinear term f(t,u)may be singular at t=0,t=1and u=0.By applying the Guo-Krasnoselskii fixed point theorem of cone expansion-compression type,some existence theorems of positive solutions are established.The existing result is extended by these existence theorems when f(t,u)is superlinear and sublinear.
出处
《浙江大学学报(理学版)》
CAS
CSCD
2012年第4期381-384,共4页
Journal of Zhejiang University(Science Edition)
基金
国家自然科学基金资助项目(11071109)
关键词
奇异常微分方程
多点边值问题
正解
存在性
多解性
Singular Ordinary differential
multi-point boundary value problem
positive solution
existence
multiplicity of solutions