摘要
研究了具有非线性扰动的中立型系统的鲁棒稳定性.通过Lyapunov Krasovskii泛函构造正定矩阵,使得标称中立型系统渐近稳定的条件下,得到了使具有非线性不确定扰动的中立型系统渐近稳定且与时滞量的大小无关的充分性判别准则,给出了鲁棒界的估计式.其算法归结为解一个线性矩阵不等式,消除了参数选取的随意性.并进行了举例说明.
The robustness of a class of neutral systems with nonlinear perturbations is considered. By Lyapunov-Krasovskii functional and Lyapunov stability theory, the delay-independent stability conditions are derived, which are based on the asymptotically stability of the normal neutral systems. Some analytical methods are employed to investigate the bound on the perturbations so that the systems remain stable, and its computation is transformed to solve a LMI leading to the free parameters in the coupling Riccati equations do not need to be readjusted. Finally, numerical examples are given to demonstrate effective of our results.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2004年第4期539-544,共6页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家重点基础研究发展计划基金资助项目(G1998030417)
211项目.
关键词
中立型系统
非线性扰动
扰动界
鲁棒稳定性
线性矩阵不等式
neutral system
nonlinear perturbation
perturbation bound
robust stability
linear matrix inequality