期刊文献+

关于几乎正则2-连通图的Hamilton性的注记 被引量:4

A Note on Hamilton Cycles in Almost-Regular 2-Connected Graphs
下载PDF
导出
摘要 研究几乎正则图的Hamilton性,得到了定理1 设G是2连通的(k,k+1)图,并且k≥V(G)3+13,如果G是偶数阶的图,则G是Hamilton图.定理2 设G是(k,k+2)图,并且k≥n3+103,如果存在G的一个非空独立集B1,使得B1≥n3-133,而且对于G的所有独立集B,都有B≤n2-1,则G是Hamilton图. We study the properties of Hamiltonian of almost-regular graphs, and obtain Theorem 1 and Theorem 2.Theorem 1Let G be a 2-connected (k, k+1)-graph with k≥V(G)3+13. If G is a graph of even order, then G is Hamiltonian.Theorem 2Let G be a (k, k+2)-graph with k≥n3+103. If there exists a nonempty independent subset B_1 of G such that B_1≥n3-133, and B≤n2-1 for all independent subset B of G, then G is Hamiltonian.
作者 谢德政
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第4期570-572,共3页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 几乎正则图 2-连通图 HAMILTON性 almost-regular graph 2-connected Hamilton cycle
  • 相关文献

参考文献5

  • 1Bondy J A, Murty U S R. Graph Theory with Applications [M]. London: The Macmillan Press Ltd, 1976. 10- 100.
  • 2Jackson B. Hamilton Cycles in Regular 2-connected Graphs [J]. J Combin Theory Ser B, 1980, 29:27 -46.
  • 3Jackson B. Hamilton Cycles in Ahmost-regular 2-connected Graphs [ J]. J Combin Theory Ser B, 1993, 57:77 - 87.
  • 4Broersma H J. On Some Intriguing Problems in Hamiltonian Graph Theory-a Survey [J]. Discrete Mathematics, 2002, 251: 47- 69.
  • 5Gould R J. Advance on the Hamiltonian Problem-a Survey [J]. Graphs and Combin, 2003, 19:7 -52.

同被引文献21

  • 1魏丽侠,贾治中.非连通图G_1uG_2及G_1uG_2uK_2的优美性[J].应用数学学报,2005,28(4):689-694. 被引量:26
  • 2孙磊,孙艳丽,董海燕.几类图的相邻顶点可区别的全染色[J].西南师范大学学报(自然科学版),2006,31(4):1-4. 被引量:7
  • 3Fertin G, Raspaud A, Reed B. Star Coloring of Graphs [J]. Journal of Graph Theory , 2004, 47(3) : 163 -- 182.
  • 4Alon N, Mohar B. The Chromatic Number of Graph Powers [J]. Combinatorics, Probability and Computing, 2002, (11) : 1--10.
  • 5Bondy J A, Murty U S R. Graph Theory [M]. Berlin:Springer, 2008.
  • 6Daniel W C. Strong Edge-Coloring of Graphs With Maximum Degree 4 Using 22 Colors [J ]. Discrete Math, 2006, 306: 2772 -- 2778.
  • 7FERTIN G, RASPAUD A, REED B. Star coloring of graphs [J]. Journal of Graph Theory, 2004, 47 (3) :163 - 182.
  • 8ALON N, MOHAR B. The chromatic number of graph powers [J]. Combinatorics, Probability and Computing, 2002 (11):1 - 10.
  • 9SHIU W C, TAM W K. The strong chromatic index of complete cubic Halin graphs[J]. Applied Mathematics letters,2009,22: 754 - 758.
  • 10Cuaig M, Shepherd W. Domination in Graphs with Minimum Degree Two[J]. J Graph Theory, 1989, 13: 749 -762.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部