期刊文献+

羟基化碳纳米管/聚己内酯复合材料的结构和力学性能! 被引量:4

Structure and mechanical properties of polycaprolactone-based materials modified by hydroxyl-functionalized carbon nanotubes
下载PDF
导出
摘要 将羟基化多壁碳纳米管在超声波作用下均匀分散于己内酯单体中,通过原位微波辅助开环聚合的方法制备了聚己内酯/羟基化多壁碳纳米管复合材料.羟基化多壁碳纳米管的引入明显提高了聚己内酯材料的强度和模量,但是断裂伸长率却随着羟基化多壁碳纳米管含量的增加而持续降低.羟基化多壁碳纳米管的质量分数为0.5%时,纳米复合材料的拉伸强度和杨氏模量可提高至纯聚己内酯材料的2倍.利用扫描电镜、X线衍射、红外光谱和示差扫描量热分析揭示了纳米复合材料断裂形貌、结晶情况和热性质,进而探讨了羟基化多壁碳纳米管对提高力学性能的作用机制. The hydroxyl-functionalized multi-walled carbon nanotubes(MWCNT-OH)were homogeneously dispersed in the ε-caprolactone(CL) monomer by ultrasonic treatment.Subsequently,the nanocomposites based MWCNT-OH and polycaprolactone(PCL) was prepared by in-situ polymerization under microwave radiation.Meanwhile,the addition of MWCNT-OH resulted in the simultaneous enhancement of strength and Young's modulus,however,it is pitiful that the elongation at break of the nanocomposites continuously decreased with an increase of the MWCNT-OH content.When the content of MWCNT-OH was 0.5%,the tensile strength and Young's modulus were two times than those of neat PCL.Furthermore,the fractured structure,crystalline behavior and thermal properties of the as-prepared nanocomposites were investigated by scanning electron microscope,X-ray diffraction,infrared spectroscopy,and differential scanning calorimetry,respectively,and hence the mechanism of MWCNT-OH on enhancing mechanical performances was discussed.
出处 《湖北大学学报(自然科学版)》 CAS 2012年第4期491-495,共5页 Journal of Hubei University:Natural Science
关键词 碳纳米管 聚己内酯 纳米复合材料 力学性能 carbon nanotube polycaprolactone nanocomposite mechanical properties
  • 相关文献

参考文献21

  • 1Guzman M E,Rodriguez A J,Minaie B. Processing and properties of syntactic foams reinforced with carbon nanotubes[J].Journal of Applied Polymer Science,2012,(03):23832394.
  • 2Cha S I,Kim K T,Lee K H. Mechanical and electrical properties of cross-linked carbon nanotubes[J].Carbon,2008,(03):482-488.
  • 3Isoniemi T,Johansson A,Hakala T K. Surface plasmon effects on carbon nanotube field effect transistors[J].Applied Physics Letters,2011,(03):031105.
  • 4Kim D,Zhu L J,Han C S. Raman characterization of thermal conduction in transparent carbon nanotube films[J].Langmuir,2011,(23):14532-14538.
  • 5Shin S R,Bae H,Cha J M. Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation[J].Acs Nano,2012,(01):362-372.
  • 6Karatepe N,Yuca N. Hydrogen adsorption on carbon nanotubes purified by different method[J].Int J Hyerogen Energ,2011,(17):11467-11473.
  • 7Yenilmez E,Zhang H S,Zhang L. Pattern-free growth of carbon nanotube tips for scanning probe microscopy[J].Journal of Nanoscience and Nanotechnology,2011,(05):669-673.
  • 8Liu N S,Fang G J,Zeng W. Enhanced field emission from three-dimensional patterned carbon nanotube arrays grown on flexible carbon cloth[J].Journal of Materials Chemistry,2012,(08):3478-3484.
  • 9Yilmazoglu O,Popp A,Pavlidis D. Vertically aligned multiwalled carbon nanotubes for pressure,tactile and vibration sensing[J].Nanotechnology,2012,(08):085501.
  • 10Guo X Q,Su J Y,Guo H X. Electric field induced orientation and self-assembly of carbon nanotubes in water[J].SOFT MATERIALS,2012,(04):1010-1016.

二级参考文献17

  • 1Porter A E, Gass M, Muller K, et al. Direct Imaging of Single-Walled Carbon Nanotubes in Cells [J]. Nat Nanotechnol, 2007,2(10) : 713-717.
  • 2Harrison B S,Atala A. Carbon Nanotube Applieations for Tissue Engineering[J]. Biomaterials, 2007, 28 (2) :344-353.
  • 3Abarrategi A, Gutierrez M C, Moreno-Vicente C, et al. Multiwall Carbon Nanotube Scaffolds for Tissue Engi neering Purposes [J].Biomaterials, 2008,29 ( 1 ) : 94-102.
  • 4Usui Y, Aoki K, Narita N, et al. Carbon Nanotubes with High Bone-Tissue Compatibility and Bone-Formation Acceleration Effects [J]. Small, 2008,4 (2) : 240- 246.
  • 5Mei F, Zhong J, Yang X, et al. Improved Biological Characteristics of Poly (L-Lactic Acid) Electrospun Membrane by Incorporation of Multiwalled Carbon Nanotubes/Hydroxyapatie Nanoparticles[J].Biomacromolecules, 2007,8(12):3729-3735.
  • 6MacDonald R A,Voge C M, Kariolis M,et al. Carbon Nanotubes Increase the Electrical Conductivity of Fibroblast-Seeded Collagen Hydrogels [J]. Acta Biomater ,2008,4(6) : 1583-1592.
  • 7Meng J,Kong H, H an Z,et a l. Enhancement of Nanofibrous Scaffold of Multiwalled Carbon Nanotubes/Polyurethane Composite to the Fibroblasts Growth and Biosynthesis[J]. J Biomed Mater Res Part A, 2009, 85A(1): 105-116.
  • 8Fraczek A, Menaszek E, Paluszkiewicz C, et al. Comparative in vivo Biocompatibility Study of Single- and Multi-Wall Carbon Nanotubes[J].Acta Biomater, 2008,4(6):1593-1602.
  • 9Zhang D, Kandadai M A, Cech J, et al. Poly(L-Lactide) (PLLA)/Multwalled Carbon Nanotube (MWCNT) Composite:Characterization and Biocompatibility Evaluation [J]. J Phys Chem B, 2006, 110 (26): 12910-12915.
  • 10Lu F,Gu L,Meziani M J,et al. Advances in Bioapplications of Carbon Nanotubes [J]. Adv Mater, 2009,21 (2) : 139-152.

同被引文献115

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部