期刊文献+

M-矩阵与M-矩阵的逆的Hadamard积的最小特征值下界的估计 被引量:1

Bounds on the Minimum Eigenvalues of the Hadamard Product of an M-matrice and Its Inverse
下载PDF
导出
摘要 给出了非奇异M-矩阵A的逆矩阵与非奇异M-矩阵B的Hadamard积的最小特征值下界的估计式,该估计式只依赖于矩阵A与B的元素,易于计算,算例表明,所得估计式在一定条件下比现有估计式更为精确。 A new lower bound of the minimum eigenvalues of Hadamard product for inverse A-1 of nonsingular M-matrix A and nonsingular M-matrix B is given.This estimating formula of the bounds are easier to calculate since they only depend on the entries of matrices A and B.The given numerical example show that estimating formula of the bounds is better than several known estimating formulas.
作者 周平 赵慧
出处 《四川理工学院学报(自然科学版)》 CAS 2011年第6期729-732,共4页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
关键词 M-矩阵 HADAMARD积 最小特征值 下界 对角占优 M-matrix Hadamard product smallest eigenvalue lower bound diagonally dominant
  • 相关文献

参考文献2

二级参考文献2

同被引文献11

  • 1Fiedler M,Markham T.An inequality for the Hadamard product of an M-matrix and inverse M-matrix[J] .Linear Algebra Appl,1988,101:1-8.
  • 2Yong Xuerong. Proof of a conjecture of Fiedler and Markham[J]. Linear Algebra Appl,2000,320:167-171.
  • 3Yong Xuerong, Wang Zheng.On a conjecture of Fiedler and Markham[J]. Linear Algebra Appl, 1999,288:259- 267.
  • 4Song Yongzhong. On an inequality for the Hadamard product of an M-matrix and its inverse [ J ]. Linear Algebra Appl,2000~305:99-105.
  • 5Chen Shencan. A lower bound for the minimum eigenvalue of the Hadamard product of matrices [ J ]. Linear Algebra Appl,2004,378:159-166.
  • 6LI Houbiao, Hung Tingzhu, Shen Shuqian, et al. Lower bounds for the minimum eigenvalue of Hadamardproduct of an M-maaix and its inverse [ J]. Linear Algebra Appl,2007,420:235-247.
  • 7LI Yaotang, Cheng Fubin, Wang Defeng. New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse[J].Linear Algebra Appl,2009, 430:1423-1431.
  • 8LI Yaotang, LI Yanyan, Wang Ruiwu, et al. Some new bounds on eigenvalues of the Hadamard product and the Fan product of matrices [J]. Linear Algebra Appl, 2010,432:536-545.
  • 9Vargar S.Minimal Gerschgorin sets [J].Pacific J. Math, 1965,15(2):719-729.
  • 10陈景良,陈向晖.特殊矩阵[M].北京:清华大学出版社,2000.130.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部