期刊文献+

基于仿生模式识别与传统模式识别的人脸识别效果比较研究 被引量:46

Face Recognition:Biomimetic Pattern Recognition vs.Traditional Pattern Recognition
下载PDF
导出
摘要 本文实现了一种基于仿生模式识别的人脸识别系统 ,并将其识别效果同最近邻分类器与不同核函数的SVM进行了分析比较 .以ORL人脸库为识别对象 ,针对有“拒识”的情况下 ,通过改变不同识别算法的可调参数 ,在保证参与训练人的正确识别率在大致相同水平的条件下 ,分析了参与训练人的错误识别率 (错识别为参与训练的其他人 )与未参与训练人的错误接受率 (错识别为参与训练的某人 )的优劣 .比较结果表明 。 Based on a new theory model-BPR (Biomimetic Pattern Recognition), a face recognition system is implemented. In order to compare the recognition performance of it with that of some TPR (traditional pattern recognition), such as NN-based method and SVM-based methods with different types of kernel functions, using the ORL face database, we analyze the misclassification rate and false acceptance rate at the same level of the correct recognition rate by adjusting parameters of different algorithms. Comparison results show that our method is superior to the other two methods.
出处 《电子学报》 EI CAS CSCD 北大核心 2004年第7期1057-1061,共5页 Acta Electronica Sinica
基金 国家自然科学基金 (No .60 1 350 1 0 )
关键词 仿生模式识别 人脸识别 主分量分析(PCA) 最近邻分类器 支持向量机(SVM) Algorithms Database systems Functions Mathematical models Neural networks Principal component analysis
  • 相关文献

参考文献19

  • 1W Bledsoe.Man-machine facial recognition[A].Panoramic Research Inc,Palo Alto,CA,1966,Rep PRI:22.
  • 2R Bruneli,T Poggio.Face recognition:features versus templates[J].IEEE Trans.Pattern Analysis and Machine Intelligence,1993,15:1042-1052.
  • 3M Turk,A Pentland.Face recognition using eigenfaces[A].Proc of IEEE Conf On CVPR[C].1991.586-591.
  • 4Yongsheng Gao.Face recognition using line edge map[J].IEEE Trans Pattern Analysis and Machine Intelligence,June 2002,24(6):764-779.
  • 5Shang-Huang Lin,Sun-Yuan Kung,Long-Ji Lin.Face recognition/detection by probabilistic decision-based neural network[J].IEEE Trans On neural networks,Jan.1997,8(1):114-132.
  • 6N Intrator,D Reisfeld,Y Yeshurun.Extraction of facial features for recognition using neural networks[A].Proceedings of International Workshop on Automatic Face and Gesture Recognition[C].1995.260-265.
  • 7P J Phillips.Support vector machines applied to face recognition[A].In Advances in Neural Information Processing Systems 11[C].USA:MIT Press,1998.803-809.
  • 8G D Guo,S Z Li,K L Chan.Face recognition by support vector machines[J].Image and Vision Computing,2001,19(9-10):631-638.
  • 9Peter N Belhumeur,Joo Hespanha,David J Kriegman.Eigenfaces vs.fisherfaces:recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 10G D Guo,H J Zhang.Boosting for fast face recognition[A].Second International Workshop on Recognition,Analysis and Tracking of Faces and Gestures in Real-time Systems (RATFG-RTS 2001)[C].Conjunction with ICCV2001,2001.96-100.

二级参考文献24

  • 1A Д亚历山大洛夫等 王元等(译).数学--它的内容、方法和意义,第三卷[M].北京:科学出版社,1962..
  • 2冀复生.关于美国信息技术发展情况的一些看法[N].科技日报,2002-07-18(特别关注).
  • 3Yang Guangzheng,Pattern Recogn,1994年,27卷,1期,53页
  • 4Cheng Yongqing,Pattern Recogn,1993年,26卷,1期,115页
  • 5焦李成,神经网络的应用与实现,1993年
  • 6Huang Chunglin,Pattern Recogn,1992年,25卷,2期,115页
  • 7Lam K M,Pattern Recognit,1996年,29卷,5期,771页
  • 8洪子泉,自动化学报,1992年,18卷,2期,232页
  • 9Hong Z Q,Pattern Recognit,1991年,24卷,3期,211页
  • 10Wang Shoujue,IJCNN'99

共引文献512

同被引文献431

引证文献46

二级引证文献181

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部