期刊文献+

基于小波特征的快速核主分量分析技术 被引量:2

A Fast Kernel Principal Component Analysis Technique Based on Wavelet Feature
下载PDF
导出
摘要 论文提出了基于小波特征的核主分量分析技术,即在进行非线性映射之前,首先利用小波变换对原始输入训练样本进行预处理,获取低频平滑、水平细节和垂直细节等三个子图的小波特征,然后在频域上,对它们分别进行核主分量分析(KPCA),对最终获得的3组特征向量设计了一种特征融合的方法。在ORL标准人脸库上的试验结果表明所提方法不仅在识别性能上优于现有的核主分量分析方法,而且,特征抽取速度提高了11倍。 A novel kernel principal component analysis method based on wavelet feature is developed in the paper.Wavelet transform is first employed to preprocess the original training samples and threee groups of wavelet features,which correspond to lower frequency,horizontal detail and vertical detail respectively,are obtained.Kernel principal com-ponent analysis(KPCA)is then performed in each transformed lower dimensional samples.In order to combine three classes of nonlinear principal component features obtained above together,a feature fusion method is presented.Finally,the experimental results on ORL face database indicate that the proposed method is superior to KPCA in the recogniton rate and11times faster than KPCA in feature extraction.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第22期45-47,93,共4页 Computer Engineering and Applications
基金 国家自然科学基金(编号:60072034) 国家教委博士点基金资助
关键词 核主分量分析 小波分解 特征抽取 人脸识别 kernel principal component analysis,wavelet decomposition,feature extraction,face recognition
  • 相关文献

参考文献10

  • 1高西奇,周洪祥,何振亚.基于小波变换的主元分析人脸图象识别[J].东南大学学报(自然科学版),1996,26(2):137-141. 被引量:17
  • 2J Sergent. Microfenesis of face perception[C].In:H D Ellis. Aspects of Face Processing,Nijhoff,Dordrecht,1986
  • 3Nastar C ,Ayache N.Frequency-based non-rigid motion analysis[J].IEEE Trans Pattern Anal Machine Intell, 1996; 18 ( 11 ): 1067~1079
  • 4Cheng Jun Liu,Harry Wechsler. A shape- and texture-based enhanced Fisher classifier for face recognition[J].IEEE Trans Image Processing,2001; 10(4) :598~608
  • 5A Averbuch, D Lazar, M Israeli.Image Compression Using Wavelet Transform and Multiresolution Decomposition[J].IEEE Trans Image Processing,1996;5(1)
  • 6Sebastian Mika,Gunnar Ratsch,Jason Weston et al.Fisher discriminant analysis with kernels[C].In:IEEE workshop on Networks for Signal Processing, 1999
  • 7Bernhard Scholkopf,Alexander Smola,Klaus Robert Muller. Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computer, 1998; 10:1299~1319
  • 8Volker Roth,Volker Steinhage. Nonlinear discriminant analysis using kernel functions[C].In:prioc Of Neural Information Processing systems,Denver, 1999-11
  • 9G Baudat,F Anouar. Generalized discriminant analysis using a kernel approach[J].Neural Computation ,2000; 12(10) :2385~2404
  • 10V Vapnik.The Nature of statistical Learning Theory[M].New York:Springer-Verlag, 1995

共引文献16

同被引文献16

  • 1周国民,陈勇,李国军.人脸识别中应用小波变换的两个关键问题[J].浙江大学学报(理学版),2005,32(1):34-38. 被引量:27
  • 2高西奇,周洪祥,何振亚.基于小波变换的主元分析人脸图象识别[J].东南大学学报(自然科学版),1996,26(2):137-141. 被引量:17
  • 3孙宗宝,孙名松.基于核主成分提取和支持向量机的入侵检测[J].信息技术,2007,31(7):29-31. 被引量:7
  • 4Zheng W M, Zou C R, Zhao L. An improved algorithm for kernel principal component analysis [ J ]. Neural Processing letters, 2005, 22 ( 1 ) : 49 - 56.
  • 5Turk M,Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71 - 86.
  • 6Belhumeur P N,Hespanha J P,Kriengman D J.Eigenfaces vs.fisherfaces:Recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711 -720.
  • 7Scholkopf B,Smola A,Muller K.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10 (5):1299 - 1319.
  • 8Baudat G,Anouar F.Generalized discriminant analysis using a kernel approacn[J].Neural Computation,2000,12 (10):2385 -2404.
  • 9Moghaddam B.Principal manifolds and probabilistic subspaces for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24 (6):780 - 788.
  • 10Nastar C,Ayache N.Frequency-based non-rigid motion analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18 (11):1067 - 1079.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部