期刊文献+

静电纺丝法制备TiO_2-WO_3纳米纤维及光催化脱汞的研究 被引量:12

Electrospun TiO_2-WO_3 Nanofibers for Photocatalytic Removal of Mercury
原文传递
导出
摘要 采用静电纺丝法成功制备了TiO2-WO3纳米纤维,利用X-射线衍射(X-ray diffraction,XRD)、扫描电子显微镜(scanning electron microscopy,SEM)、紫外可见吸收光谱(ultraviolet-visible,UV-Vis)及比表面积及孔径分析仪(Brunauer-Emmett-Teller,BET)对其进行表征。使用制备的纤维脱除模拟烟气中的元素汞,研究了TiO2-WO3分别在无光、紫外光和可见光下的脱汞率;考察了WO3的最佳掺杂比;并分析了TiO2-WO3光催化脱汞的机制。结果表明TiO2-WO3纤维中TiO2以锐钛矿相形态存在,纤维的直径约为200nm;当WO3的掺杂含量为7%时,TiO2-WO3在紫外光下的汞脱除率可达到100%;TiO2-WO3脱汞效率的稳定性好,在420 min时紫外光下的脱汞率仍保持在100%。表面酸性和有效的电荷转移是TiO2-WO3纳米纤维光催化活性提高的主要原因。 TiO2 and TiO2-WO3 nanofibers were successfully prepared by electrospinning method.The nanofibers were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),ultraviolet-visible(UV-Vis) as well as Brunauer-Emmett-Teller(BET).TiO2-WO3 nanofibers were used to remove Hg0from simulated flue gas in the dark,under visible light and UV light respectively.The mercury removal efficiency under different light conditions,the optimum doping content of WO3 as well as the capability to oxidize Hg0 for 8 cycles were tested.The results show that TiO2-WO3 nanofibers exhibit an anatase phase structure with average diameter of 200 nm.The UV-Vis absorption intensity of TiO2-WO3 significantly increases with increasing WO3 doping content.In addition,when the doping content of WO3is 7%,the Hg0 removal efficiency under UV irradiation could reach 100%.After the eighth cycles,the Hg0 removal efficiency over TiO2-WO3 remains at 100%,which indicate that it is stable with prolonged use of the catalysts.The increased photocatalytic activity is attributed to the surface acidity and better photoelectron-hole separation.
出处 《中国电机工程学报》 EI CSCD 北大核心 2012年第32期44-49,8,共7页 Proceedings of the CSEE
基金 国家自然科学基金项目(41172140 51176060 51021065)~~
关键词 TiO2-WO3 纳米纤维 静电纺丝 光催化 脱汞 TiO2-WO3 nanofibers electrospinning photocatalytic mercury removal
  • 相关文献

参考文献23

  • 1孟素丽,段钰锋,黄治军,王运军,杨立国.烟气成分对燃煤飞灰汞吸附的影响[J].中国电机工程学报,2009,29(20):66-73. 被引量:25
  • 2Pavlish J H,Sondreal E A,Mann M D. Status review of mercury control options for coal-fired power plants[J].Fuel Processing Technology,2003,(2-3):89-165.
  • 3Brown T D,Smith D N,Hargis R A. Mercury measurement and its control:What we know,have learned and need to further investigate[J].Jawma,1999,(06):628-640.
  • 4Pitoniak E,Wu C Y,Londeree D. Nanostructured silica-gel doped with TiO2 for mercury vapor control[J].Journal of Nanoparticle Research,2003,(3-4):281-292.
  • 5Steinab E D,Cohenc Y,Winera A M. Environmental distribution and transformation of mercury compounds[J].Critical Reviews in Environmental Science and Technology,1996,(01):1-43.
  • 6Schoeny R. Mercury study report to congress[M].Washington,DC:United States Government Printing Office,1997.14-16.
  • 7Li H L,Li Y,Wu C Y. Oxidation and capture of elemental mercury over SiO2-TiO2-V2O5 catalysts in simulated low rank coal combustion flue gas[J].Chemical Engineering Journal,2011,(1-3):186-193.
  • 8Wang K H,Jehng J M,Hsieh Y H. The reaction pathway for the heterogeneous photocatalysis of trichloroethylene in gas phases[J].Journal of Hazardous Materials,2002,(01):63-75.
  • 9Hoffmann M R,Martin S T,Choi W. Environmental applications of semiconductor photocatalysis[J].Chemical Reviews,1995,(01):69-96.doi:10.1021/cr00033a004.
  • 10Fujishima A,Rao T N,Tryk D A. Titanium dioxide photocatalysis[J].Journal of Photochemistry & Photobiology C:Photochemistry Reviews,2000,(01):1-21.

二级参考文献72

共引文献88

同被引文献136

引证文献12

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部