期刊文献+

稀疏性高光谱解混方法研究 被引量:8

Survey of sparsity constrained hyperspectral unmixing
下载PDF
导出
摘要 该文在分析基于几何先验和统计先验的传统线性高光谱解混方法的基础上,研究了基于稀疏性先验的高光谱解混模型和算法,对基于光谱库的稀疏性高光谱解混方法和基于非负矩阵分解的稀疏性高光谱解混方法进行了分析比较和性能测试,验证了稀疏性高光谱解混方法的有效性,讨论了相关研究要点和后续研究思路。 On the basis of analyzing traditional linear hyperspectral unmixing methods based on the geometrical prior and the statistical prior,sparsity constrained hyperspectral unmixing models and algorithms are studied.The methods of sparsity constrained hyperspectral unmixing based on spectral library and those based on non-negative matrix factorization are reviewed and compared with each other.The effectiveness of the sparse hyperspectral unmixing is demonstrated.The corresponding perspectives on the future are presented.
出处 《南京理工大学学报》 CAS CSCD 北大核心 2013年第4期486-492,共7页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(61101194) 江苏省自然科学基金(BK2011701) 江苏省“六大人才高峰”项目(WLW-011) 高等学校博士学科点专项科研基金资助项目(20113219120024) 中国地质调查局工作项目(1212011120227) 航遥中心对地观测技术工程实验室开放课题资助
关键词 高光谱 稀疏性 解混 hyperspectral sparsity unmixing
  • 相关文献

参考文献36

  • 1童庆禧;张兵;郑兰芬.高光谱遥感--原理、技术与应用[M]北京:高等教育出版社,2006.
  • 2Iordache M D,Plaza A,Dias J B. On the use of spectral libraries to perform sparse unmixing of hyperspectral data[A].Reykjavik,Iceland:IEEE Press,2010.1-4.
  • 3Iordache M D,Dias J B,Plaza A. Unmixing sparse hyperspectral mixtures[EB/OL].http://www.umbc.edu/rssipl/peeple-/aplaza/Papers/Conferences/2009.IGARSS.Sparse.pdf,2009.
  • 4Dias J B,Plaza A. Hyperspectral unmixing geometrical,statistical and sparse regression-based approaches[A].Toulouse,France:SPIE Press,2010.
  • 5Masalmah Y,VelezReyes M. A full algorithm to compute the constrained positive matrix factorization and its application in unsupervised unmixing of hyperspectral imagery[A].Orlando,USA:SPIE Press,2008.
  • 6Yang Zuyuan,Chen Xi,Zhou Guoxu. Spectral unmixing using nonnegative matrix factorization with smoothed L0 norm constraint[A].Yichang,China:SPIE Press,2009.
  • 7Nascimento J M,Dias J B. Does independent component analysis play a role in unmixinghyperspectraldata[J].IEEE Transactions on Geoscience and Remote Sensing,2005,(01):175-187.doi:10.1109/TGRS.2004.839806.
  • 8Nascimento J M,Dias J B. Hyerspectralunmixing algorithm via dependent component analysis[A].Barcelona,Spain:IEEE Press,2007.4033-4036.
  • 9Jia Sen,Qian Yuntao. Spectral and spatial complexitybased hyperspectral unmixing[J].IEEE Transactions on Geoscience and Remote Sensing,2007,(12):3867-3879.
  • 10Dobigeon N,Tourneret J Y,Chang C I. Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery[J].IEEE Transactions on Signal Processing,2008,(01):2684-2695.doi:10.1109/TSP.2008.917851.

二级参考文献44

共引文献41

同被引文献65

  • 1张兵,高连如.高光谱图像分类与目标探测.北京:科学出版社,2011:15-98.
  • 2Nascimento J M P and Bioucas-Dias J M. 2010. Unmixing hyperspectral intimate mixtures//Proc. SPIE 7830, Image and Signal Processing for Remote Sensing X VI. Toulouse, France : SPIE.
  • 3Clark R N, Swayze G A, Livo K E, Kokaly R F, Sutley S J, Dalton J B, McDougal R R and Gent C A. 2003. Imaging spectroscopy: earth and planetary remote sensing with the USGS Tetracorder and expert systems. Journal of Geophysical Research, 108 ( E12 ) : 5131.
  • 4Eckstein J and Bertsekas D P. 1992. On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone oper- ators. Mathematical Programming, 55 ( 1/3 ) : 293 - 318.
  • 5Heylen R and Gader P. 201g. Nonlinear spectral unmixing with a linear mixture of intimate mixtures model. IEEE Geoscience and Remote Sensing Letters, 11 (7): 1195- 1199.
  • 6Hapke B. 1981. Bidirectional reflectance spectroscopy 1. Theory. Jour- nal of Geophysical Research, 86 ( B4 ) : 3039 - 3054.
  • 7Hapke B. 2005. Theory of Reflectance and Emittance Spectroscopy. Cambridge, U. K. : Cambridge Univ. Press.
  • 8Hapke B W, Nelson R M and Smythe W D. 1993. The opposition effect of the moon : the contribution of coherent backscatter. Science, 260 (5107 ) : 509 - 511.
  • 9Heylen R, Parente M and Gader P. 2014. A review of nonlinear hyper- spectral unmixing methods. IEEE Journal of Selected Topics in Ap- plied Earth Observations and Remote Sensing, 7 (6) : 1844 -1868.
  • 10Hu Y H, Lee H B and Scarpace F L. 1999. Optimal linear spectral un- mixing. IEEE Transactions on Geoscience and Remote Sensing, 37 (1) : 639 -644.

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部