期刊文献+

基于灰色神经网络的凝汽器水侧清洁系数预测 被引量:5

Gray neural network based prediction of water side clean coefficient of the condenser tubes
下载PDF
导出
摘要 分别采用灰色模型、神经网络以及串联灰色神经网络对某机组凝汽器水侧清洁系数进行预测。结果表明,串联灰色神经网络模型优于单一预测模型,其预测值更接近真实值,在网络训练过程中实现了误差可控,将该模型用于凝汽器水侧清洁系数的预测可行。在实际应用中,可根据前3个清洗周期某时刻的数据来预测下1个周期该时刻的清洁系数,依据所需的输入参数,即可实现在线预测凝汽器的清洁系数。 The gray model,neural network model and series gray neural network model were employed to predict the water side clean coefficient of the condenser tubes in a power plant.The results showed that,the series gray neural network model was superior to the single prediction model.Its predicted value was closer to the true value,and the error was controllable during the network training process.So it is feasible and effective to predict the water side clean coefficient of the condenser tubes by applying this model.In practical applications,we can predict the clean coefficient at some time according to the one at the time in the first three cleaning cycles.By the required input parameters,the online prediction of water side clean coefficient of the condenser tubes can be realized.
出处 《热力发电》 CAS 北大核心 2013年第9期95-99,共5页 Thermal Power Generation
关键词 凝汽器 清洁系数 灰色理论 人工神经网络 灰色神经网络 预测 condenser clean coefficient gray theory artificial neural network gray neural network prediction
  • 相关文献

参考文献10

二级参考文献34

共引文献93

同被引文献39

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部